基于复杂网络挖掘古代止痛方剂用药规律  被引量:13

Mining the Medication Law of Ancient Analgesic Formulas Based on Complex Network

在线阅读下载全文

作  者:孟凡红[1] 李明[1] 李敬华[1] 牛亚华[1] 

机构地区:[1]中国中医科学院中医药信息研究所

出  处:《中医杂志》2013年第2期145-148,166,共5页Journal of Traditional Chinese Medicine

基  金:北京市科技计划项目(Z090507006209011)

摘  要:目的通过复杂网络挖掘技术,总结古代止痛方剂的核心药物、配伍规律及用药特点,以期为疼痛的临床治疗及新药开发提供参考。方法筛选汉代到金元时期的代表性方书著作14部,收集止痛方剂2746首,建立中药止痛方剂数据库并进行术语规范;利用复方药物配伍的无尺度网络规律,构建止痛方剂复杂网络,分析止痛方剂的核心药物及配伍规律。结果按疼痛部位分类,挖掘出腹痛、胸心痛、头痛、肢节痛、腰痛、胁痛、眼目痛、咽痛、全身痛、齿痛在汉唐、金宋元时期排名前10位的高频单味药和药对。结论运用复杂网络挖掘技术,得到了汉唐、宋金元时期治疗各类痛证的核心药物、配伍药对以及用药特点,为今后进一步深入挖掘历代止痛方剂的用药配伍规律起到了示范作用。Objective To summarize the core medicinal, composition law and medication characteristics of the ancient analgesic formulas through data mining in complex network and provide a reference for treating pain and new drug development. Methods Totally 2 746 formulas were selected from 14 typical formulary books during the Han to Jin-Yuan Dynasties. The analgesic formula database was established and the terms were standardized. The complex network of analgesic formulas was built according to the scale-free networks law of formula composition and the core medicinal and composition law was analyzed. Results The top 10 frequent single herbs and couplet medicines during the Han, Tang, Song, Jin and Yuan Dynasties were found according to the pain location such as abdominal pain, chest pain, heartache, headache, limb pain, lower back pain, hypochondriac pain, eyes pain, sore throat, body aches and tooth pain. Conclusion The core medicinal, composition law and medication characteristics of analgesic formulas during the Han, Tang, Song, Jin and Yuan Dynasties are found through data mining in complex network. This research plays an exemplary role in digging the medication and composition law of ancient analgesic formulas in future.

关 键 词:止痛方剂 核心药物 用药规律 复杂网络 数据挖掘 

分 类 号:R285[医药卫生—中药学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象