检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xingbo WANG Huanshui ZHANG Minyue FU
机构地区:[1]School of Control Science and Engineering, Shandong University [2]School of Electrical Engineering and Computer Science, University of Newcastle
出 处:《控制理论与应用(英文版)》2013年第1期27-34,共8页
基 金:supported by the National Natural Science Foundation for Distinguished Young Scholars of China (No. 60825304);the National Basic Research Development Program of China (973 Program) (No. 2009cb320600);the Open Project of State Key Laboratory of Industrial Control Technology (ICT1006)
摘 要:Target tracking using wireless sensor networks requires efficient collaboration among sensors to tradeoff between energy consumption and tracking accuracy. This paper presents a collaborative target tracking approach in wire- less sensor networks using the combination of maximum likelihood estimation and the Kalman filter. The cluster leader converts the received nonlinear distance measurements into linear observation model and approximates the covariance of the converted measurement noise using maximum likelihood estimation, then applies Kalman filter to recursively update the target state estimate using the converted measurements. Finally, a measure based on the Fisher information matrix of maximum likelihood estimation is used by the leader to select the most informative sensors as a new tracking cluster for further tracking. The advantages of the proposed collaborative tracking approach are demonstrated via simulation results.Target tracking using wireless sensor networks requires efficient collaboration among sensors to tradeoff between energy consumption and tracking accuracy. This paper presents a collaborative target tracking approach in wire- less sensor networks using the combination of maximum likelihood estimation and the Kalman filter. The cluster leader converts the received nonlinear distance measurements into linear observation model and approximates the covariance of the converted measurement noise using maximum likelihood estimation, then applies Kalman filter to recursively update the target state estimate using the converted measurements. Finally, a measure based on the Fisher information matrix of maximum likelihood estimation is used by the leader to select the most informative sensors as a new tracking cluster for further tracking. The advantages of the proposed collaborative tracking approach are demonstrated via simulation results.
关 键 词:Target tracking Wireless sensor network Maximum likelihood estimation Kalman filtering Fisher information matrix Sensor selection
分 类 号:TP212.9[自动化与计算机技术—检测技术与自动化装置] TN929.5[自动化与计算机技术—控制科学与工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.190.219.46