检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]江南大学物联网工程学院,江苏无锡214122
出 处:《计算机工程与科学》2013年第1期160-165,共6页Computer Engineering & Science
基 金:国家自然科学基金资助项目(61170121)
摘 要:在现有多种主题爬虫的基础上,提出了一种基于概率模型的主题爬虫。它综合抓取过程中获得的多方面的特征信息来进行分析,并运用概率模型计算每个URL的优先值,从而对URL进行过滤和排序。基于概率模型的主题爬虫解决了大多数爬虫抓取策略单一这个缺陷,它与以往主题爬虫的不同之处是除了使用主题相关度评价指标外,还使用了历史评价指标和网页质量评价指标,较好地解决了"主题漂移"和"隧道穿越"问题,同时保证了资源的质量。最后通过多组实验验证了其在主题网页召回率和平均主题相关度上的优越性。Based on the study and research of the existing variety of focused crawlers, the paper pro- poses a focused crawler using probabilistic model, which analyzes various characteristics obtained in crawl process and uses probabilistic model to calculate each URL priority so as to filter and sort URLs. The proposed focused crawler based on probabilistic model solves the deficiency that most existing crawlers usually only adopt a single strategy for fetching webs from Internet. The distinct feature of our focused crawler is that: not only subject relativity but also history evaluation and web equality are con- sidered so that the "topic drift" and "tunneling" problems are solved as well as the resource equality is guaranteed. Experimental results show that, compared with other focused crawlers, the focused crawler based on probabilistic prediction can gather more subject relevant web pages by retrieving less web pa- ges, and has a better average topic relevant degree.
关 键 词:主题爬虫 概率模型 URL过滤 URL排序 优先值
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.216.39