NUMERICAL SIMULATION OF SOLITARY WAVE RUN-UP AND OVER-TOPPING USING BOUSSINESQ-TYPE MODEL  被引量:4

NUMERICAL SIMULATION OF SOLITARY WAVE RUN-UP AND OVER-TOPPING USING BOUSSINESQ-TYPE MODEL

在线阅读下载全文

作  者:TSUNG Wen-Shuo HSIAO Shih-Chun LIN Ting-Chieh 

机构地区:[1]Department of Hydraulic and Ocean Engineering,National Cheng Kung University [2]Tainan Hydraulics Laboratory,National Cheng Kung University

出  处:《Journal of Hydrodynamics》2012年第6期899-913,共15页水动力学研究与进展B辑(英文版)

基  金:financially supported by the National Science Council(Grant NSC101-2628-E-015-MY3)

摘  要:In this article, the use of a high-order Boussinesq-type model and sets of laboratory experiments in a large scale flume of breaking solitary waves climbing up slopes with two inclinations are presented to study the shoreline behavior of breaking and non-breaking solitary waves on plane slopes. The scale effect on run-up height is briefly discussed. The model simulation capability is well validated against the available laboratory data and present experiments. Then, serial numerical tests are conducted to study the shoreline motion correlated with the effects of beach slope and wave nonlinearity for breaking and non-breaking waves. The empirical formula proposed by Hsiao et al. for predicting the maximum run-up height of a breaking solitary wave on plane slopes with a wide range of slope inclinations is confirmed to be cautious. Furthermore, solitary waves impacting and overtopping an impermeable sloping seawall at various water depths are investigated. Laboratory data of run-up height, shoreline motion, free surface elevation and overtopping discharge are presented. Comparisons of run-up, run-down, shoreline trajectory and wave overtopping discharge are made. A fairly good agreement is seen between numerical results and experimental data. It elucidates that the present depth-integrated model can be used as an efficient tool for predicting a wide spectrum of coastal problems.In this article, the use of a high-order Boussinesq-type model and sets of laboratory experiments in a large scale flume of breaking solitary waves climbing up slopes with two inclinations are presented to study the shoreline behavior of breaking and non-breaking solitary waves on plane slopes. The scale effect on run-up height is briefly discussed. The model simulation capability is well validated against the available laboratory data and present experiments. Then, serial numerical tests are conducted to study the shoreline motion correlated with the effects of beach slope and wave nonlinearity for breaking and non-breaking waves. The empirical formula proposed by Hsiao et al. for predicting the maximum run-up height of a breaking solitary wave on plane slopes with a wide range of slope inclinations is confirmed to be cautious. Furthermore, solitary waves impacting and overtopping an impermeable sloping seawall at various water depths are investigated. Laboratory data of run-up height, shoreline motion, free surface elevation and overtopping discharge are presented. Comparisons of run-up, run-down, shoreline trajectory and wave overtopping discharge are made. A fairly good agreement is seen between numerical results and experimental data. It elucidates that the present depth-integrated model can be used as an efficient tool for predicting a wide spectrum of coastal problems.

关 键 词:Boussinesq equations solitary wave RUN-UP SHORELINE scale effect OVERTOPPING 

分 类 号:P731.2[天文地球—海洋科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象