Horizontal gene transfer in the evolution of photosynthetic eukaryotes  被引量:4

Horizontal gene transfer in the evolution of photosynthetic eukaryotes

在线阅读下载全文

作  者:Jinling HUANG Jipei YUE 

机构地区:[1]Department of Biology, East Carolina University, Greenville, Noah Carolina 27858, USA [2]Key Laboratory of Plant Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China

出  处:《Journal of Systematics and Evolution》2013年第1期13-29,共17页植物分类学报(英文版)

摘  要:Horizontal gene transfer (HGT) may not only create genome mosaicism, but also introduce evolutionary novelties to recipient organisms. HGT in plastid genomes, though relatively rare, still exists. HGT-derived genes are particularly common in unicellular photosynthetic eukaryotes and they also occur in multicellular plants. In particular, ancient HGT events occurring during the early evolution of primary photosynthetic eukaryotes were probably frequent. There is clear evidence that anciently acquired genes played an important role in the establishment of primary plastids and in the transition of plants from aquatic to terrestrial environments. Although algal genes have often been used to infer historical plastids in plastid-lacking eukaryotes, reliable approaches are needed to distinguish endosymbionts-derived genes from those independently acquired from preferential feeding or other activities.Horizontal gene transfer (HGT) may not only create genome mosaicism, but also introduce evolutionary novelties to recipient organisms. HGT in plastid genomes, though relatively rare, still exists. HGT-derived genes are particularly common in unicellular photosynthetic eukaryotes and they also occur in multicellular plants. In particular, ancient HGT events occurring during the early evolution of primary photosynthetic eukaryotes were probably frequent. There is clear evidence that anciently acquired genes played an important role in the establishment of primary plastids and in the transition of plants from aquatic to terrestrial environments. Although algal genes have often been used to infer historical plastids in plastid-lacking eukaryotes, reliable approaches are needed to distinguish endosymbionts-derived genes from those independently acquired from preferential feeding or other activities.

关 键 词:ENDOSYMBIOSIS genome evolution PLANTS plastids. 

分 类 号:Q933[生物学—微生物学] Q756

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象