检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学技术大学热科学和能源工程系,安徽合肥230027
出 处:《光谱学与光谱分析》2013年第2期316-319,共4页Spectroscopy and Spectral Analysis
基 金:国家自然科学基金项目(50976112)资助
摘 要:辐射测温以Planck定律为基础通过测量物体表面的发射辐射来反演温度。推导了有限立体角辐射测量条件下的单色测温方程,发现多光谱辐射测温能够实现温度和光谱发射率同时求解通常需满足特定的辐射测量条件:进行微元立体角辐射测量或仅针对漫发射体的有限立体角辐射测量。引入多项式发射率模型,经过数学转化,可以摆脱以上测量限制,得到具有测量普适性的单色测温方程,但却不一定能同时测量光谱发射率。对测温方程组的多解问题进行了初步研究,提出使测量通道数大于待求变量数及采用非线性最小二乘来解决此问题。Based on Planck's law, the surface temperature of an object can be determined by measurement of emitted radiation. The equation for monochromatic radiation thermometry within a finite solid-angle was deduced, and it was found that if the sur-face temperature and spectral emissivity can be solved at the same time, the specific radiation measurement conditions for multi-spectral thermometry should be generally met that the radiation measurement should be implemented within an infinitesimal sol- id-angle or within a finite solid-angle only for a perfect diffuser. When the directional spectral emissivity modeled by finite poly-nomial series is employed and proper mathematical transformation is used, a universal equation for monochromatic radiation ther-mometry is obtained. So the restrictions in radiation measurement can be got rid of, but spectral emissivity may not be solved simultaneously. Multi-solution problem was preliminarily investigated, and so a solution was put forward that the channel num- ber should be more than the number of the variables to be solved and the nonlinear least squares method should be used.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222