检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:金航峰[1] 黄凌霞[1] 谢琳[2] 金佩华[3] 楼程富[1]
机构地区:[1]浙江大学动物科学学院,杭州310058 [2]上海大学经济学院,上海200444 [3]浙江农林大学林业与生物技术学院,杭州311300
出 处:《农业机械学报》2013年第1期147-151,共5页Transactions of the Chinese Society for Agricultural Machinery
基 金:浙江省自然科学基金资助项目(LY12C17001);高等学校博士学科点专项科研基金资助项目(20100101120084);浙江省公益技术研究农业项目(2011C22075);农业科技成果转化资金项目(2011GB23600008)
摘 要:选择Savitzky-Golay平滑作为光谱数据的预处理方法,根据偏最小二乘模型的回归系数进行有效波长的选取,最终筛选出了桑蚕鲜茧干壳量指标在可见/近红外光谱谱区的7个有效波长,并结合多元线性回归建立干壳量的检测模型。该模型运算简单且检测精度较高,预测决定系数和剩余预测偏差分别为0.758 7和2.046 4,是应用可见/近红外光谱检测桑蚕鲜茧干壳量的理想模型。Visible/near infrared (Vis- NIR) spectroscopy was investigated to determine the dry weight of the cocoons layer of mulberry silkworm fresh cocoons. Optimal partial least squares (PLS) models were developed with different preprocessing, and the data preprocessed by Savitzky - Golay (SG) smoothing was chosen for the effective wavelengths selection. The selection was operated based on regression coefficients in PLS models, and reduced the original 601 varieties into 7. Then multiple linear regression (MLR) was used for calibration and prediction based on the seven effective wavelengths, compared with the PLS model built on full-spectrum data. The results showed that MLR model was the optimum model for the dry weight of the cocoons layer detection in the process of production and marketing, because of its simple arithmetic and accurate detection. The correlation coefficient and residual predictive deviation were 0. 758 7 and 2. 046 4.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.58.215.209