检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张自常[1,2] 李鸿伟[1] 曹转勤[1] 王志琴[1] 杨建昌[1]
机构地区:[1]扬州大学江苏省作物遗传生理重点实验室,江苏扬州225009 [2]江苏省农业科学院植物保护研究所,江苏南京210014
出 处:《作物学报》2013年第1期84-92,共9页Acta Agronomica Sinica
基 金:国家重点基础研究发展计划(973计划)项目(2009CB118603);国家自然科学基金重大国际合作交流项目(31061140457);国家自然科学基金项目(31071360;31271641);中央级科研院所基本科研业务费专项基金项目(农业)(201103003;201203079);国家"十二五"科技支撑计划项目(2011BAD16B14;2012BAD04B08);江苏高校优势学科建设工程专项经费资助
摘 要:本研究旨在探讨氮肥和灌溉方式对水稻产量和品质的影响及其互作效应,这对指导水稻高产、优质和高效栽培有重要意义。将两优培九(籼稻)和扬粳4038(粳稻)种植于土培池,设置常规灌溉、轻干湿交替灌溉和重干湿交替灌溉3种灌溉方式及0氮(0kghm–2)、中氮(240kghm–2)和高氮(360kghm–2)3种氮素水平,观察其对产量和稻米品质的影响。结果表明,在中氮和高氮水平下,产量、稻米的整精米率、外观品质和崩解值,以轻干湿交替灌溉显著高于或优于常规灌溉。在中氮水平下,重干湿交替灌溉的产量和稻米品质显著低于或劣于常规灌溉;在高氮水平下,重干湿交替灌溉的产量高于常规灌溉,稻米品质在这两种灌溉方式间差异不显著。轻干湿交替灌溉显著提高了灌浆期剑叶光合速率、籽粒中ATP酶活性及根系中吲哚-3-乙酸、玉米素+玉米素核苷和脱落酸含量。说明灌溉方式和氮肥对产量和稻米品质具明显互作效应。在轻干湿交替灌溉和中氮水平下根系、叶片和籽粒生理活性增强是水稻产量提高和稻米品质改善的重要生理原因。This study investigated how nitrogen rates and irrigation regimes and their interactions affect grain yield and quality of rice, which would have great significance in conducting the cultivation for high yielding, good quality and high efficiency. Two rice cultivars, Liangyoupeijiu (indica) and Yangjing 4038 (japonica), were grown in the tanks filled with soil. Three irrigation regimes, conventional irrigation (CI), alternate irrigation with wetting and moderate drying (WMD) and alternate irrigation with wetting and severe drying (WSD), and three nitrogen (N) rates, ON (0 kg ha-l), medium amount of N (MN, 240 kg ha-l), and high amount of N (HN, 360 kg ha-l), were used during the whole growing season. The results showed that, at either MN or HN rate, grain yield, head rice, apparant quality, and breakdown were significantly higher or better under the WMD regime than under the CI regime. At the MN rate, the WSD regime significantly decreased grain yield and quality as compared with the CI regime. At the HN rate, however, the grain yield was higher under the WSD regime than under the CI regime and grain quality showed no significant difference between the two irrigation regimes. The WMD regime significantly increased photosynthetic rate of the flag leaf, activity of adenosine triphosphate enzyme (ATPase) in grains and contents of indole-3-acetic acid, zeatin + zeatin riboside, and abscisic acid in roots during grain filling. All the data indicate that interactions between nitrogen rates and irrigation regimes mediate the grain yield and quality of rice. Stronger root activity, greater leaf photosynthetic rate and larger sink strength contrib- ute to higher grain yield and better grain quality of rice under the MN rate and WMD regime.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195