检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孔德平[1] 骞朋波[1] 沈煜年[1] 尹晓春[1] 杨钧[1]
机构地区:[1]南京理工大学力学与工程科学系,南京210094
出 处:《机械工程学报》2013年第1期95-101,共7页Journal of Mechanical Engineering
基 金:国家自然科学基金(10872095);总装预研重点(21011019)资助项目
摘 要:基于固定界面模态综合法,将柔性结构划分为多个子结构,采用添加-删除技术处理接触约束,建立柔性结构弹粘塑性碰撞动态子结构模型。考虑冲击载荷作用下出现的材料的应变率效应,采用Cowper-Symonds本构关系,推导柔性结构在模态坐标下的碰撞动力学方程,提出柔性结构碰撞弹粘塑性波传播的动态子结构方法,并通过理论证明主模态的存在性和主模态截断的收敛性。运用该方法分析直杆纵向碰撞和简支梁横向碰撞问题,计算结果表明,弹粘塑性波的传播速度,超应力效应,以及超应力幅值逐步衰减等波传播特征,均符合弹粘塑性波的理论特征。同时,通过将碰撞力和弹粘塑性波的数值计算结果与三维动力有限元解进行对比,验证了该方法的数值收敛性和计算碰撞弹粘塑性波传播的有效性。A dynamic substructure method is proposed to account for the propagation of elastic-viscoplastic waves in flexible structures excited by impact. An elastic-viscoplastic substructure model considering the effect of strain rate is established. The constitutive relation Cowper-Symonds is adopted to describe effect of strain rate, and an addition-deletion technique is used to account for contact constraints. T^e governing equations of impact bodies in modal coordinates are derived from the finite element theory and the substructure synthesis method. The existence of main modes and -onwrgence of modes truncation are also proved theoretically. The propagations of elastic-viscoplastic waves are calculated in a rod struck longitudinally and a flexible beam struck transversely by a mass. The elastic-viscoplastic wave speed, the overstress phenomenon and the attenuation characteristic of overstress resulted from viscosity are all coincidence with the theory of elastic-viscoplastic waves. The comparisons of the numerical results of the present technique with those of the three-dimensional dynamical finite element show that the present method is convergent in numerical simulation and valid for the propagation of elastic-viscoplastic waves excited by impact.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49