基于评价对象类别的跨领域情感分类方法研究  被引量:3

Cross-domain Sentiment Classification with Opinion Target Categorization

在线阅读下载全文

作  者:张慧[1,2] 李寿山[1,2] 李培峰[1,2] 朱巧明[1,2] 

机构地区:[1]江苏省计算机信息处理技术重点实验室,苏州215006 [2]苏州大学计算机科学与技术学院,苏州215006

出  处:《计算机科学》2013年第1期229-232,250,共5页Computer Science

基  金:国家自然科学基金(60970056;61070123;61003155);高等学校博士学科点专项科研基金(20093201110006);模式识别国家重点实验室开发课题基金;江苏省自然科学基金(BK2011282);江苏省高校自然科学基金重大研究项目(11KIJ520003);教育部科技发展中心网络时代的科技论文快速共享专项研究资助

摘  要:情感分类任务具有领域相关性,即使用某一个领域的标注样本训练出的分类模型在对其他领域样本进行分类时性能表现往往会非常差。情感分类的跨领域学习旨在减少跨领域的性能损失。提出一种基于评价对象类别的跨领域学习方法。首先,将评价对象分为4大类:整体、硬件、软件和服务;然后,人工标注源领域中属于以上4类评价对象的句子,并构建评价对象类别分类器;最后,将不同的评价对象类别当作不同的视图,进而使用协同学习(Co-trai-ning)进行跨领域情感分类。实验结果表明,提出的方法有效地改进了跨领域学习性能。The task of sentiment classification is domain-specific,i.e.,a classifier learning from the annotated data from a domain often performs dramatically badly on the data from a different domain.We presented a novel approach for cross-domain sentiment classification.Specifically,we first generalized four general categories of the opinion targets:overall,software,hardware,and service and classified all sentences into these categories.Then,some sentences with the category information were annotated in the source domain and a classifier for opinion target categorization was developed with the annotated data to classify all the sentences in both the source and target domain.Third,the four categories of opinion targets were considered as four different views which are employed in a standard co-training algorithm to perform cross-domain sentiment classification.Experimental results across several domains of Chinese reviews demonstrate the effectiveness of the proposed approach.

关 键 词:评价对象 协同训练 最大熵 跨领域情感分类 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象