一种用于多目标跟踪的增强型SMC-PHD滤波算法  被引量:3

An Improved SMC-PHD Filter for Multiple Targets Tracking

在线阅读下载全文

作  者:吴伟[1,2] 尹成友[1] 

机构地区:[1]电子工程学院,合肥230037 [2]脉冲功率激光技术国家重点实验室,合肥230037

出  处:《雷达学报(中英文)》2012年第4期406-413,共8页Journal of Radars

基  金:安徽省自然科学基金(090412067)资助课题

摘  要:该文对标准型SMC-PHD滤波器作了两点改进。第一,提出基于观测值的目标个数和目标状态估计方法,该方法首先计算以观测值为行、存活粒子为列的权值矩阵,将按行计算的权值和与判决门限比较,把大于门限的观测值判决为真实观测值,并据此估算目标个数和目标状态。第二,为每个粒子分配表示存活年龄的辅助变量,以抑制强杂波环境下的目标数高估问题。仿真实验表明,在强杂波环境下,增强型SMC-PHD算法在多目标跟踪稳定性方面优于标准型SMC-PHD算法。Two improved contributions have been advanced for the standard Sequential Monte Carlo Probability Hypothesis Density (SMC-PHD) filter. Firstly, a novel method is advanced for the cardinality and state estimation. A weight matrix is firstly calculated by measurements and persistent particles, and the weight sum of each row is then evaluated, the measurements indexed by row will be judged as true if its weight sum is larger than a certain threshold, and the weight sum of persistent particle states will be reported as the true target states. Secondly, an assistant variable which is used to denote the persistent age for every particle is introduced, by the help of this age variable, the overrated problem of targets number in dense clutter environment can be effectively restricted. The results of numerical simulation prove that the improved SMC-PHD filter has higher tracking performance than the standard one.

关 键 词:多目标跟踪 概率假设密度 序贯蒙特卡罗 目标出生强度 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象