检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]解放军电子工程学院,安徽合肥230037 [2]安徽省电子制约技术重点实验室,安徽合肥230037
出 处:《电子学报》2012年第12期2367-2373,共7页Acta Electronica Sinica
摘 要:本文将孤立点检测的思想引入到欠定混合矩阵的盲辨识问题,提出了一种基于孤立点检测的混合矩阵盲辨识方法.首先计算混合信号的空间时频分布并检测出单源时频点,然后检测出单源时频点中的孤立点并将其从中去除,再通过聚类的方法估计混合矩阵.该方法降低了对信号稀疏性的要求,通过去除数据中的孤立点,提高了矩阵的估计精度,同时也有助于对源信号数目的估计.仿真实验表明,与已有算法相比,本文方法进一步提高了混合矩阵的估计精度,并且有更强的鲁棒性.This paper introduces the concept of outlier detection into blind identification of underdetermined mixtures. We propose a mixing matrix estimation algorithm based on outlier detection. First calculate the spatial Time-Frequency (TF) distribution of the mixtures,detect the single source points in the TF domain, and then detect the outliers, remove them from the set of single source points,and finally estimate the mixing matrix using a clustering method. The proposed algorithm relaxes the condition on the sparsity of sources. The mixing matrix estimation accuracy is improved by detecling the outliers and removing them, which is also helpful for the estimation of the number of sources. Simulation results show that the proposed algorithm eslimates the mixing matrix with high accuracy and robusmess compared with other algorithms.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222