检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东北电力大学自动化工程学院,吉林吉林132012
出 处:《节能》2012年第12期24-27,2,共4页Energy Conservation
摘 要:针对变压器故障诊断中出现的多故障分类问题,为提高支持向量机的多故障分类的准确率,利用遗传算法(GA)对支持向量机的相关参数进行了优化。将利用遗传算法优化的支持向量机(GA-SVM)应用于变压器故障诊断中,并与利用粒子群算法优化的支持向量机(PSO-SVM)的识别结果进行比较。对比试验结果可以看出,GA-SVM算法能够更为有效地选择支持向量机的相关参数,在很大程度上提高了变压器多故障分类的准确性。Aiming at the problems that the fault diagnosis of the transformer appear fault classification, in order to improve the Support Vector Machine (SVM) fault classification accuracy, the Genetic Algorithm (GA) to optimize the parameters of SVM is utilized. Finally, the Genetic Algorithm to optimize the Support Vector Machine (GA-SVM) algorithm is applied to the fault diagnosis of transformer, and compared with the PSO algorithm to optimize the Support Vector Machine (GA-SVM) algorithm identification results. The results show that GA-SVM algorithm can obtain better classification result than the PSO-SVM algorithm, which has a significant guidance on the fault diagnosis of transformer.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.107.92