检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:柴瑜超[1] 林琳[2] 赵斌[2] 何丹农[1,2]
机构地区:[1]上海交通大学材料科学与工程学院,上海200240 [2]纳米技术及应用国家工程研究中心,上海200241
出 处:《材料导报》2013年第1期38-43,65,共7页Materials Reports
基 金:国家自然科学基金(21071098);上海市国际科技合作基金(11520706100);国家国际科技合作项目(2011DFA50530)
摘 要:纳米TiO2作为一种功能性半导体材料,在环境保护、光电转换、涂料行业和工业催化等领域有着极为广泛的用途。然而,光谱吸收范围窄、对太阳光的利用率低以及光量子效率低是限制TiO2实际应用的主要原因。掺杂改性可以拓宽光谱响应范围和提高量子效率,是提高光催化剂活性的重要方法。介绍了掺杂前后TiO2的催化原理,综述了稀土元素单一掺杂、稀土元素与其他元素共掺杂TiO2光催化剂的研究进展,并进一步指出了稀土掺杂TiO2中存在的问题和未来的研究方向。As a kind of functional semiconductor material, nano-TiO2 has a very wide range of applications in the fields of environmental protection, photoelectric conversion, coatings industry, and industrial catalysis. However, the narrow absorption range of spectra, the low utilization rate of sun light and the low quantum efficiency are the main reasons that limit the practical applications of TiO2. Doping can broaden the scope of spectral response and im prove the quantum efficiency, which is an important method to increase the activity of photocatalysis. This article de scribes the principle of with and without doped TiO2. The research advances of rare earth single〉element doping and co doping with other elements are discussed in detail. Current existing problems and future developing trends in this area are also discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145