星点设计-效应面法优化酸枣仁黄酮滴丸的制备工艺  被引量:8

Optimization of Preparation Process of Zizyphi Spinosi Semen Flavonoids dropping pills by Central Composite Design-Response Surface Methodology

在线阅读下载全文

作  者:张婷[1,2] 解军波[1] 张彦青[1] 陈大为[2] 

机构地区:[1]天津商业大学制药工程系,天津300134 [2]沈阳药科大学中药学院,沈阳110016

出  处:《中国药学杂志》2013年第2期123-128,共6页Chinese Pharmaceutical Journal

基  金:国家自然科学基金资助项目(31101235;31000749)

摘  要:目的应用星点设计-效应面法优化酸枣仁黄酮滴丸制备工艺。方法以滴距、药液温度和冷却剂温度为自变量,以丸重变异系数、圆整度和溶散时限为指标,采用SPSS软件对实验数据进行多元线性模型和二次多项式模型拟合,得出最佳数学模型,Origin软件绘制效应图和等高线图,再根据效应图优选最佳条件。结果二次多项式模型相关系数优于多元线性模型,复相关系数为0.981,为最终拟合模型;模型的理论预测值与实测值偏差较小,模型具有良好的预测性。结论通过星点设计-效应面法建立的模型预测性良好,可用于对酸枣仁黄酮滴丸制备工艺的优化。OBJECTIVE To optimize the formulations of Zizyphi Spinosi Semen flavonoid dropping pills by central composite design-response surface methodology. METHODS Central composite design-response surface methodology was applied to optimize the preparation process with the dropping distance, dropping temperature, and cooling temperature as independent variables, while dependent variables were the variance of weight, spherical degree, and dissolution time. SPSS software was used to fit multivariate linear equation and second-order polynomial equation for experimental data. Response surface and contour plot were delineated according to best-fit mathematic models by Origin software, and the optimum formulation was selected by response surface. RESULTS Quadratic muhinomial model was better than multivariate linear model, and the regression coefficient was 0. 981. The bias between the observed and predicted values of the optimum process was negligible, indicating the high predictability of the model. CONCLUSION The model established by central composite design-response surface methodology and SPSS software is accurate for prediction and can be used to optimize the preparation process of Zizyphi Spinosi Semen flavonoids dropping pills.

关 键 词:酸枣仁黄酮 滴丸 星点设计-效应面优化法 

分 类 号:R944[医药卫生—药剂学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象