检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]Department of Physics,University of Science and Technology of China
出 处:《Journal of Rare Earths》2013年第1期27-31,共5页稀土学报(英文版)
基 金:Project supported by the National Key Basic Research Program of China (2013CB921800);the National Natural Science Foundation of China (11074245, 11204292, 11274299);the Fundamental Research Funds for the Central Universities (WK2030020022)
摘 要:An efficient near-infrared (NIR) downconversion (DC) by converting broadband ultraviolet (UV) into NIR was demon- strated in YVO4:Tma+,yb3+ phosphors. The phosphors were extensively characterized using various methods such as X-ray diffrac- tion, photoluminescence excitation, photoluminescence spectra and decay lifetime to provide supporting evidence for DC process. Upon UV light varying from 260 to 350 nm or blue light (473 nm) excitation, an intense NIR emission of Yb3+ corresponding to tran- sition of 2Fs/2/5→2F7/2 peaking at 985 nm was generated. The visible emission, the NIR mission and the decay lifetime of the phosphors of various Yb3+ concentrations were investigated. Experimental results showed that the energy transfer from vanadate group to Yb3+ via Tm3+ was very efficient. Application of the broadband DC YVO4:Tma+,yb3+ phosphors might greatly enhance response of sili- con-based solar cells.An efficient near-infrared (NIR) downconversion (DC) by converting broadband ultraviolet (UV) into NIR was demon- strated in YVO4:Tma+,yb3+ phosphors. The phosphors were extensively characterized using various methods such as X-ray diffrac- tion, photoluminescence excitation, photoluminescence spectra and decay lifetime to provide supporting evidence for DC process. Upon UV light varying from 260 to 350 nm or blue light (473 nm) excitation, an intense NIR emission of Yb3+ corresponding to tran- sition of 2Fs/2/5→2F7/2 peaking at 985 nm was generated. The visible emission, the NIR mission and the decay lifetime of the phosphors of various Yb3+ concentrations were investigated. Experimental results showed that the energy transfer from vanadate group to Yb3+ via Tm3+ was very efficient. Application of the broadband DC YVO4:Tma+,yb3+ phosphors might greatly enhance response of sili- con-based solar cells.
关 键 词:DOWNCONVERSION YVO4:Tm3+ yb3+ energy transfer rare earths
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7