检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西北工业大学生命学院,西安710072 [2]西北工业大学计算机学院,西安710072
出 处:《模式识别与人工智能》2013年第1期28-33,共6页Pattern Recognition and Artificial Intelligence
基 金:国家自然科学基金(No.60872145);博士后科学基金(No.201104682)资助项目
摘 要:提出一种有效的蛋白质结构域结构分类方法,将结构分类问题表示为图像分类问题.将蛋白质结构域的三维结构转换为距离矩阵,并视作灰度图像;从而将结构域的二级结构及拓扑结构,分别映射为此类图像中的不同尺度和方向的局部结构,以及由这些局部结构组成的形状.设计Gabor滤波器来分割这些局部结构,并构造描述二级结构组成的百分比特征.提出一种Radon-Legendre矩来描述形状,并构造描述形状的矩特征.对比实验表明,该方法在结构域分类的识别率和样本数目鲁棒性两个方面均优于其它方法,有效地实现结构域分类.Representing structural classification as image classification, an effective method of structural classification of protein domain is proposed. Firstly, the spatial structure of protein domain is mapped to its distance matrix which is regarded further as gray texture image. As a result, the secondary structure elements (SSE) and the topology of domain are transformed to local geometric structures with variant scales, orientations and the local-structure-composed shape in such image respectively. Then, Gabor filters are designed to segment these local structures out and extract the percentage feature which represents the composition of SSE. After that, Radon-Legendre moment is presented to characterize the local-structure-composed shape and is used as feature of the shape. Finally, the composition feature and the moment feature are combined to perform structural domain classification. The experimental results show that the proposed method achieves effective classification of protein domain and outperforms other methods in both classification accuracy and robustness of sample count.
关 键 词:GABOR滤波 RADON变换 Radon-Legendre矩 蛋白质结构分类
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15