成形磨齿砂轮修形插补节点数最优解  被引量:1

Optimal solutions of interpolation node number of form grinding wheel dressing

在线阅读下载全文

作  者:王文珠[1] 洪荣晶[1] 袁鸿[1] 

机构地区:[1]南京工业大学机械与动力工程学院,南京210009

出  处:《现代制造工程》2013年第1期55-58,共4页Modern Manufacturing Engineering

基  金:江苏省科技支撑计划(工业)基金项目(BE2009167)

摘  要:成形磨齿的齿形精度是由成形砂轮的修形精度来保证的,某型成形磨齿机利用A轴和W轴的极坐标运动来进行砂轮修整,即用阿基米德螺旋线来插补齿形的渐开线部分。为保证修形精度,需要一定的插补节点数来满足插补时的误差要求。为提高数控系统插补计算执行效率,首先根据啮合原理和插补原理进行理论计算,得到插补曲线与齿形渐开线的法向误差;当给定允许误差时,反求出满足该齿形误差的最少插补节点数。此节点数即为插补最优解;最后给出计算实例。The profile precision of the gear form grinding machine is promised by the grinding wheel dressing precision. A type of form grinding machine using the polar motion of A shaft and W shaft realizes the grinding wheel dressing ,which is the Archimedes spiral to interpolate the involutes part of the tooth profile. To ensure the modification accuracy, a certain amount of interpolation nodes is required to meet the interpolation error. In order to improve the numerical control system interpolation computational effi- ciency, firstly, based on the principle of the gear engagement and interpolation principle the normal error of the interpolation curves with the involutes of tooth profile is gotten by the theoretical calculation. Secondly, when the allowable error was given, the minimum interpolation node is reversed which is meeting the error of tooth profile. The node number is the optimal solution. At last, a calculation example was given.

关 键 词:成形磨削 渐开线插补 阿基米德螺旋线 法向误差 

分 类 号:TH134[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象