判别分析在巨细胞病毒性肺炎筛查中的应用  

Application of discriminant analysis in the screening of cytomegalovirus pneumonia

在线阅读下载全文

作  者:曾昭成[1] 于长春[2] 孙志伟[1] 宋明媚[1] 陈小桥[1] 程丽萍[1] 

机构地区:[1]中国人民解放军第一○一医院儿科,无锡214044 [2]中国人民解放军第一○一医院信息科,无锡214044

出  处:《国际儿科学杂志》2013年第1期104-106,共3页International Journal of Pediatrics

摘  要:目的为巨细胞病毒性肺炎筛查寻找可靠且简便易行的判断准则,以减少巨细胞病毒性肺炎的漏诊和误治。方法应用判别分析方法对收集的56例巨细胞病毒性肺炎和42例普通病毒导致的喘息性支气管炎病例数据进行处理,建立诊断结果预测模型。结果经过变量筛选最后只有年龄、淋巴细胞计数和血小板计数三个指标进入模型,所建立的巨细胞病毒性肺炎筛查模型的灵敏度为80.36%,特异度为80.95%,误诊率为19.05%,漏诊率为19.64%,诊断符合率为80.61%。结论采用判别分析建立的巨细胞病毒性肺炎诊断预测模型简洁易懂,可操作性强,预测准确率较高,能为医务人员提供有力的筛查手段。Objective To look for a reliable and convenient judgement criteria for the screening of cy-tomegalovirus pneumonia in order to reduce misdiagnosis and resulted mistherapy. Methods Process collected data on fifty-six cytomegalovirus pneumonia and forty-two common viruses induced asthmatic bronchitis cases by use of discriminant analysis to construct prediction model of diagnosis result. Results Only three indexes in- cluding age,lymph count and platelet count were selected into the model via sift. The performance of the estab- lished screening model showed as follows: sensitivity was 80. 36%, specificity was 80.95%, misdiagnosis rate was 19. 05%, false negative rate was 19. 64%, diagnostic accordance rate was 80. 61%. Conclusion Being concise and of strong maneuverability and high accuracy in prediction, cytomegalovirus pneumonia diagnosis model constructed through discriminant analysis can provide powerful screening means for medical staff.

关 键 词:判别分析 巨细胞病毒性肺炎 疾病筛查 预测模型 

分 类 号:R72[医药卫生—儿科]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象