检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曾昭成[1] 于长春[2] 孙志伟[1] 宋明媚[1] 陈小桥[1] 程丽萍[1]
机构地区:[1]中国人民解放军第一○一医院儿科,无锡214044 [2]中国人民解放军第一○一医院信息科,无锡214044
出 处:《国际儿科学杂志》2013年第1期104-106,共3页International Journal of Pediatrics
摘 要:目的为巨细胞病毒性肺炎筛查寻找可靠且简便易行的判断准则,以减少巨细胞病毒性肺炎的漏诊和误治。方法应用判别分析方法对收集的56例巨细胞病毒性肺炎和42例普通病毒导致的喘息性支气管炎病例数据进行处理,建立诊断结果预测模型。结果经过变量筛选最后只有年龄、淋巴细胞计数和血小板计数三个指标进入模型,所建立的巨细胞病毒性肺炎筛查模型的灵敏度为80.36%,特异度为80.95%,误诊率为19.05%,漏诊率为19.64%,诊断符合率为80.61%。结论采用判别分析建立的巨细胞病毒性肺炎诊断预测模型简洁易懂,可操作性强,预测准确率较高,能为医务人员提供有力的筛查手段。Objective To look for a reliable and convenient judgement criteria for the screening of cy-tomegalovirus pneumonia in order to reduce misdiagnosis and resulted mistherapy. Methods Process collected data on fifty-six cytomegalovirus pneumonia and forty-two common viruses induced asthmatic bronchitis cases by use of discriminant analysis to construct prediction model of diagnosis result. Results Only three indexes in- cluding age,lymph count and platelet count were selected into the model via sift. The performance of the estab- lished screening model showed as follows: sensitivity was 80. 36%, specificity was 80.95%, misdiagnosis rate was 19. 05%, false negative rate was 19. 64%, diagnostic accordance rate was 80. 61%. Conclusion Being concise and of strong maneuverability and high accuracy in prediction, cytomegalovirus pneumonia diagnosis model constructed through discriminant analysis can provide powerful screening means for medical staff.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.154.250