Spin-orbit coupling and zero-field splitting of the high-spin ferric enzyme-substrate complex:Protocatechuate 3,4-dioxygenase complexed with 3,4-dihydroxyphenylacetate  被引量:1

Spin-orbit coupling and zero-field splitting of the high-spin ferric enzyme-substrate complex:Protocatechuate 3,4-dioxygenase complexed with 3,4-dihydroxyphenylacetate

在线阅读下载全文

作  者:Lü LingLing ZHU YuanCheng WANG XiaoFang ZUO GuoFang GUO Feng ZHAO SuRui WANG YongCheng 

机构地区:[1]College of Life Science and Chemistry,Tianshui Normal University [2]College of Chemistry and Chemical Engineering,Northwest Normal University

出  处:《Chinese Science Bulletin》2013年第6期627-633,共7页

基  金:supported by the "QingLan" Talent Engineering Fundsthrough Tian Shui Normal University;the Key Project of the Chinese Ministry of Education (211189)

摘  要:We used density functional calculations to investigate the electronic origins of the magnetic properties of the high-spin ferric enzyme-substrate complex protocatechuate 3,4-dioxygenase(3,4-PCD).The calculated g-tensors show that ligand-to-metal charge transfer transitions are from the protocatechuate(PCA) and Tyr408 orbitals to the Fe d orbitals,which lead to x-and y-polarized transitions.These polarized transitions require a spin-orbit coupling(SOC) matrix element in the z-direction,Lz(z=z'),resulting in a g z value of 2.0158,significantly deviating from 2.0023.A large zero-field splitting parameter value of+1.147cm-1 is due to △S =-1 spin-orbit mixing with the quartet states for the sextet ground state,accounting for around 73% of the SOC contribution.The SOC matrix elements indicate that the high-spin d 5 system Fe(Ⅲ),3,4-PCD-PCA is a weak spin-crossover compound with an SOC of 31.56 cm-1.We used density functional calculations to investigate the electronic origins of the magnetic properties of the high-spin ferric en- zyme-substrate complex protocatechuate 3,4-dioxygenase (3,4-PCD). The calculated g-tensors show that ligand-to-metal charge transfer transitions are from the protocatechuate (PCA) and Tyr408 orbitals to the Fe dπ orbitals, which lead to x- and y-polarized transitions. These polarized transitions require a spin-orbit coupling (SOC) matrix element in the z-direction, Lz (z = z'), resulting in a gz' value of 2.0158, significantly deviating from 2.0023. A large zero-field splitting parameter value of +1.147 cm-1 is due to AS = -1 spin-orbit mixing with the quartet states for the sextet ground state, accounting for around 73% of the SOC contribution. The SOC matrix elements indicate that the high-spin d5 system Fe(III), 3,4-PCD-PCA is a weak spin-crossover compound with an SOC of 31.56 cm-1.

关 键 词:自旋轨道耦合 双加氧酶 原儿茶酸 零场分裂 高自旋 复合物 底物 密度泛函计算 

分 类 号:Q55[生物学—生物化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象