检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海交通大学自动化系,200030 [2]同济大学电气工程系
出 处:《控制与决策》2000年第3期286-289,共4页Control and Decision
摘 要:基于一类参数化的模糊量表示 ,将模糊量同精确量统一起来。在此基础上提出规则增加、规则删除、规则修正算法 ,进行了一类自学习模糊控制器的设计。对二阶系统的参数鲁棒性仿真实验表明 ,与常规模糊控制器相比 ,这类自学习模糊控制器对控制对象的某些参数变化有较强的适应性。To improve the performance of fuzzy rules, a class of self-learning fuzzy controller is presented. Firstly, the fuzzy variable with Gauss membership function is represented by two parameters. Based on it, the analysis of the relation between fuzzy variable and precise variable is given. Then, with the nwe representation of fuzzy variable, the fuzzy rules are simply parameterized. According to the simple structure of fuzzy rules, a new algorithms of rules′ adjustment is given, including rule-adding, rule-deleting and rule-modification. The self-learning algorithm here is much simpler and more systematic than others that based on liguistic rules. Robustness experiments about two order plants are given, which show that the new self-learning fuzzy controller has better robustness than common fuzzy controller and PID controller.
分 类 号:TP273.22[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15