一类自学习模糊控制器的设计及鲁棒性分析  被引量:3

Design of a Class of Self-learning Fuzzy Controller and Its Robustness Analysis

在线阅读下载全文

作  者:张恩勤[1] 施颂椒[1] 徐立鸿[2] 

机构地区:[1]上海交通大学自动化系,200030 [2]同济大学电气工程系

出  处:《控制与决策》2000年第3期286-289,共4页Control and Decision

摘  要:基于一类参数化的模糊量表示 ,将模糊量同精确量统一起来。在此基础上提出规则增加、规则删除、规则修正算法 ,进行了一类自学习模糊控制器的设计。对二阶系统的参数鲁棒性仿真实验表明 ,与常规模糊控制器相比 ,这类自学习模糊控制器对控制对象的某些参数变化有较强的适应性。To improve the performance of fuzzy rules, a class of self-learning fuzzy controller is presented. Firstly, the fuzzy variable with Gauss membership function is represented by two parameters. Based on it, the analysis of the relation between fuzzy variable and precise variable is given. Then, with the nwe representation of fuzzy variable, the fuzzy rules are simply parameterized. According to the simple structure of fuzzy rules, a new algorithms of rules′ adjustment is given, including rule-adding, rule-deleting and rule-modification. The self-learning algorithm here is much simpler and more systematic than others that based on liguistic rules. Robustness experiments about two order plants are given, which show that the new self-learning fuzzy controller has better robustness than common fuzzy controller and PID controller.

关 键 词:自学习模糊控制器 设计 鲁棒性分析 

分 类 号:TP273.22[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象