基于贝叶斯网络的智能装配技术  被引量:1

Intelligent Assembly Technology Based on Bayesian Networks

在线阅读下载全文

作  者:张帅[1] 陈虎[1] 左平基[1] 

机构地区:[1]海军工程大学船舶与动力学院,武汉430033

出  处:《组合机床与自动化加工技术》2013年第1期118-120,125,共4页Modular Machine Tool & Automatic Manufacturing Technique

摘  要:为了弥补智能装配包含装配因素不完整的缺陷,在得出了常用零件装配推理算法的基础上,构建了基于装配推理的贝叶斯网络(Bayesian Networks,BN),通过概率推理对未知装配体进行推理装配约束。针对训练样本多而杂的问题,构建了零件识别库,使其对样本零件的特征进行识别和归类,从而提取出与BN相适应的样本,进而提高了BN推理结果的准确性。对UG进行二次开发,运用基于贝叶斯网络的装配推理模型和识别库构建了智能装配系统。实验证明:文中算法具有更高的准确性、高度的拟合性和很强的学习性。In order to make up the defect of intelligent auxiliary assembly technology which has incomplete assembly factors, Bayesian Networks based on assembly reasoning is built after the assembly reasoning arithmetic of the general part is obtained. It uses probability reasoning for the assembly reasoning of unknown part. The Part Recognition Library is built for the miscellaneous training sample. It can recognize the parts of the sample and classify them, thereby extracting the sample adapted to BN and impro- ving the veracity of the reasoning result. Intelligent assembly system which is based on the secondary development based on UG is built by combining assembly reasoning model based on BN with Part Recognition Library. The experiment show that the arithmetic of this article has great accuracy, high fitting and robust learning ability.

关 键 词:智能装配 装配推理 贝叶斯网络 零件识别库 

分 类 号:TH16[机械工程—机械制造及自动化] TG65[金属学及工艺—金属切削加工及机床]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象