机构地区:[1]Faculty of Earth Sciences, China University of Geosciences [2]Three Gorges Research Center for Geo-hazard, Ministry of Education, China University of Geosciences [3]Department of Earth Sciences, University of Hong Kong [4]Guangzhou Institute of Geochemistry, Chinese Academy of Sciences [5]State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences
出 处:《Journal of Earth Science》2013年第1期29-41,共13页地球科学学刊(英文版)
基 金:supported by the National Natural Science Foundation of China(Nos.40972042,40772041,91014002);the Research Grant Council of Hong Kong RGC(No.HKU705311P)
摘 要:The Quanji (全吉) Massif is located in the Northwest China, which is interpreted as a micro-continent that is composed of metamorphic basement and stable cover strata. There are some controversies of genetic relationship between the Quanji Massif and the major cratons in China. In this study, we obtained in situ zircon U-Pb and Hf isotopic compositions of the Yingfeng (鹰峰) rapakivi granites from the northwest Quanji Massif by application of LA-MC-ICP-MS technique. Twenty U-Pb age measurements points are concordant or near concordant, and their weighted mean 207pb/206pb age is 1 793.9±6.4 Ma (MSWD= 1.09), yields an upper intercept age of 1 800±17 Ma (MSWD=0.41); 19 Hf isotope measurements yield a two-stage Hf model ages (TDM2) of 2.63 to 2.81 Ga, with a weighted average age of about 2.70±0.02 Ga and till(t)values variate between -8.91 to -5.35. This indicates that magma source of the Yingfeng rapakivi granites were produced from partial melting of late stage of Neoarchean juvenile crust, and suggests a significant crustal growth event occurred in the Quanji Massif at that time. The Quanji Massif might be an ancient continental segment detached from the Tarim Craton based on the crustal growth history and other geological records. The Tarim Craton (including the Quanji Massif) and the North China Craton had a similar or homological early crustal evolution around -2.7 Ga, which implies that Tarim Craton might be one of the component parts of North China Craton. of the Yingfeng rapakivi granites were produced from partial melting of late stage of Neoarchean juve- nile crust, and suggests a significant crustal growth event occurred in the Quanji Massif at that time. The Quanji Massif might be an ancient continental segment detached from the Tarim Craton based on the crustal growth history and other geological records. The Tarim Craton (including the Quanji Massif) and the North China Craton had a similar or homological early crustal evolution around -2.7 Ga, which implies that The Quanji (全吉) Massif is located in the Northwest China, which is interpreted as a micro-continent that is composed of metamorphic basement and stable cover strata. There are some controversies of genetic relationship between the Quanji Massif and the major cratons in China. In this study, we obtained in situ zircon U-Pb and Hf isotopic compositions of the Yingfeng (鹰峰) rapakivi granites from the northwest Quanji Massif by application of LA-MC-ICP-MS technique. Twenty U-Pb age measurements points are concordant or near concordant, and their weighted mean 207pb/206pb age is 1 793.9±6.4 Ma (MSWD= 1.09), yields an upper intercept age of 1 800±17 Ma (MSWD=0.41); 19 Hf isotope measurements yield a two-stage Hf model ages (TDM2) of 2.63 to 2.81 Ga, with a weighted average age of about 2.70±0.02 Ga and till(t)values variate between -8.91 to -5.35. This indicates that magma source of the Yingfeng rapakivi granites were produced from partial melting of late stage of Neoarchean juvenile crust, and suggests a significant crustal growth event occurred in the Quanji Massif at that time. The Quanji Massif might be an ancient continental segment detached from the Tarim Craton based on the crustal growth history and other geological records. The Tarim Craton (including the Quanji Massif) and the North China Craton had a similar or homological early crustal evolution around -2.7 Ga, which implies that Tarim Craton might be one of the component parts of North China Craton. of the Yingfeng rapakivi granites were produced from partial melting of late stage of Neoarchean juve- nile crust, and suggests a significant crustal growth event occurred in the Quanji Massif at that time. The Quanji Massif might be an ancient continental segment detached from the Tarim Craton based on the crustal growth history and other geological records. The Tarim Craton (including the Quanji Massif) and the North China Craton had a similar or homological early crustal evolution around -2.7 Ga, which implies that
关 键 词:Quanji Massif rapakivi granite zircon Hf isotope Tarim-North China Craton crustal growth tectonic evolution.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...