Conformation and Orientation of Phospholipid Molecule in Pure Phospholipid Monolayer During Compressing  

Conformation and Orientation of Phospholipid Molecule in Pure Phospholipid Monolayer During Compressing

在线阅读下载全文

作  者:XUE Weilan WANG Dan ZENG Zuoxiang GAO Xuechao 

机构地区:[1]Institute of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

出  处:《Chinese Journal of Chemical Engineering》2013年第2期177-184,共8页中国化学工程学报(英文版)

基  金:Supported by the National Natural Science Foundation of China (20876047).

摘  要:On the basis of energy conservation law and surface pressure isotherm, the conformation energy changes of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) in pure phospholipid rnonolayer at the air/water interface during compression are derived. The optimized conformations of phospholipids at absolute freedom state are simulated by Gaussian 98 software. Based on following assumptions: (1) the conformation energy change is mainly caused by the rotation of one special bond; (2) the atoms of glycerol near the water surface are active; (3) the rotation is motivated by hydrogen-bond action; (4) the rotation of bond is inertial, one simplified track of conformational change is suggested and the conformations of DPPC and DPPG at different states are determined by the plots of conformation energy change vs. dihedral angle. The thickness of the simulated phospholipid monolayer is consistent with published experimental result. According to molecular areas at different states, the molecular orientations in the compressing process are also developed.On the basis of energy conservation law and surface pressure isotherm, the conformation energy changes of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG) in pure phospholipid monolayer at the air/water interface during compression are derived. The optimized conformations of phospholipids at absolute freedom state are simulated by Gaussian 98 software. Based on following assumptions: (1)the conformation energy change is mainly caused by the rotation of one special bond; (2)the atoms of glycerol near the water surface are active; (3)the rotation is motivated by hydrogen-bond action; (4)the rotation of bond is inertial, one simplified track of conformational change is suggested and the conformations of DPPC and DPPG at different states are determined by the plots of conformation energy change vs. dihedral angle. The thickness of the simulated phospholipid monolayer is consistent with published experimental result. According to molecular areas at different states, the molecular orientations in the compressing process are also developed.

关 键 词:DIPALMITOYLPHOSPHATIDYLCHOLINE dipalmitoylphosphatidylglycerol phospholipid monolayer CONFORMATION ORIENTATION 

分 类 号:O64[理学—物理化学] TB652[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象