检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]四川大学电气信息学院,四川省成都市610065
出 处:《电力系统自动化》2013年第4期41-46,共6页Automation of Electric Power Systems
摘 要:电力系统在强非线性情况下会发生共振。运用最简正规形思想,推导了电力系统在二阶共振点处的最简正规形,解决了传统正规形在共振点处系数奇异的问题;通过计算近似解析解,修正了非线性参与因子,并且对主导稳定模式的变化过程进行分析,揭示了二阶共振点主导稳定模式形成的物理机理。仿真结果指出,靠近鞍结分岔的二阶共振是电压稳定主导模式形成的临界域,这种变化过程由共振项引起。所提方法对于深刻认识电压稳定与功角稳定的关系具有一定价值。Power system resonance occurs in cases of strong non linearity. This paper uses the simplest normal form theory to derive the simplest normal form of a power system at the second order resonance point. This approach is able to solve the problem that traditional normal form coefficients at the second-order resonance point are strange. By calculating the approximate analytical solutions, participation factors can be fixed, the changing process of the dominant stability mode can be analyzed; then the physical mechanism caused by the second-order resonance point dominant stable mode can be revealed. The simulation results indicate that the second-order resonance close to the saddle node bifurcation is the critical region which forms the voltage stability dominant mode. This change is caused by the resonance terms. The proposed method is useful for a profound understanding of the relationship between voltage stability and angle stability.
关 键 词:电力系统稳定 最简正规形 二阶共振 修正参与因子 稳定模式
分 类 号:TM712[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30