检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]兰州理工大学计算机与通信学院,兰州730050
出 处:《计算机工程与应用》2013年第4期231-235,共5页Computer Engineering and Applications
摘 要:针对无迹粒子滤波(UPF)在较偏观测时的退化现象及重采样带来的粒子枯竭问题,提出一种自适应免疫优化的无迹粒子滤波算法(AIO-UPF)。该算法在重采样过程中,利用免疫算法在亲和度与浓度调节机制下的全局寻优能力和多样性特征,通过引入自适应阈值因子δ的Metropolis准则,使得粒子集能够有效地分布于高似然区域,提高了粒子的多样性和有效性,从而较好地抑制了在较偏观测时的粒子退化问题。仿真结果表明,AIO-UPF的性能优于传统UPF及标准粒子滤波,在状态估计精度上比传统UPF提高了27%左右。Aiming at the problem of Unscented Particle Filter(UPF) such as particles degeneracy and particles impoverishment at the partial observation, this paper proposes an Adaptive Immune Optimization Unscented Particle Filter (AIO-UPF) algo- rithm. The algorithm uses the global optimization ability and diversity of features of the immune algorithm in the affinity and concentration and the Metropolis criteria with the adaptive threshold factor δ makes the particle set move towards higher likeli- hood area. In this way, the diversity and effectiveness of particte have improved and the problem of particle degradation and de- pletion have alleviated. Simulation results indicate that the new particle filter outperforms obviously superior to PF and tradition- al Unscented Particle Filter, and in the state estimation accuracy increases by about 27%.
关 键 词:无迹粒子滤波 自适应免疫优化 METROPOLIS准则 阈值因子 粒子退化 粒子枯竭
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.5