乘性噪声干扰下的船舶突发性故障检测挖掘方法  被引量:3

Multiplicative Noise Interference Vessel Under the Sudden Fault Detection Methods

在线阅读下载全文

作  者:陈莹[1] 许慧雅[1] 

机构地区:[1]周口师范学院计算机科学与技术学院,河南周口466001

出  处:《科技通报》2013年第2期139-141,共3页Bulletin of Science and Technology

摘  要:在船舶的突发性故障检测中,故障信号不但伴有很强的非线性,并且常伴随大量的随机噪声,乘性噪声会降低非线性故障数据之间的有效联系,淡化船舶可识别的突发特征。给船舶突发性故障检测带来较大困难。为解决此问题,提出一种基于小区域噪声消除的船舶突发故障检测挖掘算法,通过设计一种包含乘性噪声小区域内的故障确认对比方法,运用故障特征核作为船舶突发故障的标准,进行故障核距离的计算,排除乘性噪声的干扰,保证优化检测。实验表明,该方法能够较好地完成乘性噪声干扰环境下的故障检测,提高了船舶故障的检测效率。In the ship of sudden fault detection,the fault signal not only with strong nonlinear,and often with more random noise,the noise will reduce multiplicative of nonlinear fault data of the effective contact between,fade out the ship may identify a sudden characteristics.His sudden fault detection to bring greater difficulties.To resolve the problems is proposed based on a small area of the ship noise cancellation sudden fault detection algorithm for mining,through the design including a small region multiplicative noise fault in confirmation contrast method,using the fault characteristics as the fault of a ship nuclear standard,the calculation of fault nuclear distance.Rule out the noise by sex,ensure the optimization detection.The experiment shows that the method can better finish multiplicative noise environment of fault,improve the efficiency of the ship fault

关 键 词:乘性噪声 小区域 船舶故障 核比对 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象