检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]海军工程大学电子工程学院 [2]91999部队
出 处:《海军工程大学学报》2013年第1期64-68,共5页Journal of Naval University of Engineering
基 金:中国博士后科学基金资助项目(20090461460)
摘 要:为提高协同反导时的多目标火力分配计算能力,首先建立了火力分配多目标数学模型;然后,针对火力分配多目标规划具有的线性不等式约束条件难以使用多目标粒子群优化算法、粒子群算法自身存在的盲目搜索等问题进行了改进,并明确了计算流程;最后,对算法进行了仿真实验,仿真实验表明:改进的多目标粒子群算法求解多目标火力分配规划模型得到的非劣解集可构成Pareto前端,且非劣解集的适应度最大值随迭代步数演变具有稳定的收敛性,验证了改进多目标粒子群算法的有效性。To increase the cooperative anti-missile capability of calculating the multi-object weapon target assignment (WTA), an improved algorithm for multi-objective particle swarm optimization (MOPSO) was proposed based on the multi-objective WTA model so as to establish a multi-objective mathematic model. The problems of MOPSO used in the WTA were solved, such as linear inequality constraints and swarm blind search. The calculation process was defined. Simulation experiments show that the improved MOPSO algorithm for WTA multi-object programming model obtains the non-inferior solutions to the Pareto front; the maximum value of the non-inferior solutions in adapta- bility which varies with the iteration number evolution is stable in convergence. The results show that the improved MOPSO is effective.
分 类 号:O221.6[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222