检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王鹏[1]
出 处:《管理科学学报》2013年第2期33-45,94,共14页Journal of Management Sciences in China
基 金:国家自然科学基金资助项目(71101119);中央高校基本科研业务费专项资金资助项目(JBK120208)
摘 要:金融波动性建模经历了从常数高阶矩到时变高阶矩的发展历程.文章扩展了现有的针对时变高阶矩波动模型风险测度效果的研究:首先,以沪深300指数和其它世界股市若干重要指数为例,通过采用"从简单模型到复杂模型"的估计步骤,实现对时变高阶矩波动模型的估计,进而运用Gram-Charlier扩展分布获得对VaR(value-at-risk)和ES(excepted shortfall)两种不同风险测度的计算值;然后,分别利用非条件覆盖检验(unconditional coverage test)和基于自举法(Bootstrap)的后验分析方法,实证对比了时变高阶矩和常数高阶矩两类模型的适用范围和精确程度.研究结果表明:就所考察的若干指数样本而言,时变高阶矩模型不仅能够较好地刻画金融价格波动的整体动力学特征,并且总体来讲,在市场风险测度准确性方面也要优于常数高阶矩波动模型.This paper extends prior studies on risk estimation of volatility models with time-varying higher-mo- ments. With several important stock market indices, we adopt a "from simple model to complex model" step to estimate several volatility models with time-varying higher-moments, and then we calculate VaR and ES val- ues according to Gram-Charlier extension distribution. We also back-test VaR based on unconditional coverage test and ES based on bootstrap. In spite of nice properties of the models with time-varying higher-moments, the backtesting results generally support models with static higher-moments.
关 键 词:时变高阶矩 VAR ES Gram—Charlier扩展分布 后验分析
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.39