检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《国际检验医学杂志》2013年第4期437-438,共2页International Journal of Laboratory Medicine
摘 要:目的建立4种疾病最优生化指标的检测模型,探讨不同模型在疾病诊断中的应用价值。方法以肺癌、乳腺癌,直肠癌和淋巴瘤患者为研究对象(113例),采用受试者工作特征(ROC)曲线和人工神经网络(ANN)建立诊断模型。结果 ANN模型中31项生化检测项目在肺癌、乳腺癌,直肠癌和淋巴瘤中的ROC曲线下面积(AUC)分别为0.777,0.848,0.827和0.733,而优化检测项目后4种疾病的AUC分别为0.869,0.949,0.859,0.947。结论不同疾病最优生化检测模型的建立提高了疾病诊断的准确,有助于减轻患者医疗费用。Objective A supervised biochemical detection model for four different diseases has been established to evaluate its possible application value for diagnosis of disease. Methods The model of biochemical items of 113 samples of carcinoma of the lungs,breast cancer,carcinoma of the rectum and lymphoma were established by receiver operating characteristic(ROC) curve and artificial natural neural network(ANN). Results The area under the ROC(AUC) of 31 detection items in carcinoma of the lungs, breast cancer,carcinoma of the rectum and lymphoma were 0. 777,0. 848,0. 827 and 0. 733, respectively. The AUC of optimal model of biochemical items in four diseases were 0. 869,0. 949,0. 859 and 0. 947, respectively. Conclusion The established optimal models of biochemical items in different diseases contribute to the enhancement of veracity and alleviation of hospitalization cost of patients.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222