Dynamic behavior of frozen soil under uniaxial strain and stress conditions  被引量:9

Dynamic behavior of frozen soil under uniaxial strain and stress conditions

在线阅读下载全文

作  者:张海东 朱志武 宋顺成 康国政 宁建国 

机构地区:[1]Traction Power State Key Laboratory, Southwest Jiaotong University [2]State Key Laboratory of Frozen Soil Engineering,Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academic Sciences [3]State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology

出  处:《Applied Mathematics and Mechanics(English Edition)》2013年第2期229-238,共10页应用数学和力学(英文版)

基  金:supported by the National Natural Science Foundation of China (No.11172251);the Open Fund of State Key Laboratory of Frozen Soil Engineering (No.SKLFSE201001);the Fundamental Research Funds for the Central Universities (No.SWJTU09CX069)

摘  要:The split Hopkinson pressure bar (SHPB) method is used to investigate the dynamic behavior of the artificial frozen soil under the nearly uniaxial strain and uniaxial stress conditions. The tests are conducted at the temperatures of -3 ℃, -8 ℃, -13℃, -17℃, -23℃, and -28℃ and with the strain rates from 900 s^-1 to 1500 s^-1. The nearly uniaxial stress-strain curves exhibit an elastic-plastic behavior, whereas the uniaxial stress-strain curves show a brittle behavior. The compressive strength of the frozen soil exhibits the positive strain rate and negative temperature sensitivity, and the final strain of the frozen soil shows the positive strain under the nearly uniaxial strain is greater rate sensitivity. The strength of the frozen soil than that under the uniaxial stress. After the negative confinement tests, the specimens are compressed, and the visible cracks are not observed. However, the specimens are catastrophically damaged after the uniaxial SHPB tests. A phenomenological model with the thermal sensitivity is established to describe the dynamic behavior of the confined frozen soil.The split Hopkinson pressure bar (SHPB) method is used to investigate the dynamic behavior of the artificial frozen soil under the nearly uniaxial strain and uniaxial stress conditions. The tests are conducted at the temperatures of -3 ℃, -8 ℃, -13℃, -17℃, -23℃, and -28℃ and with the strain rates from 900 s^-1 to 1500 s^-1. The nearly uniaxial stress-strain curves exhibit an elastic-plastic behavior, whereas the uniaxial stress-strain curves show a brittle behavior. The compressive strength of the frozen soil exhibits the positive strain rate and negative temperature sensitivity, and the final strain of the frozen soil shows the positive strain under the nearly uniaxial strain is greater rate sensitivity. The strength of the frozen soil than that under the uniaxial stress. After the negative confinement tests, the specimens are compressed, and the visible cracks are not observed. However, the specimens are catastrophically damaged after the uniaxial SHPB tests. A phenomenological model with the thermal sensitivity is established to describe the dynamic behavior of the confined frozen soil.

关 键 词:frozen soil dynamic loading split Hopkinson pressure bar (SHPB) con-finement high strain rate 

分 类 号:O344.1[理学—固体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象