以作者合作共现为源数据的科研团队发掘方法研究  被引量:26

On the Scientific Research Teams Identification Method Taking Co-authorship of Collaboration as the Source Data

在线阅读下载全文

作  者:沈耕宇[1] 黄水清[1] 王东波[1] 

机构地区:[1]南京农业大学信息科学技术学院,南京210095

出  处:《现代图书情报技术》2013年第1期57-62,共6页New Technology of Library and Information Service

摘  要:在对个人和科研机构的评价研究中,针对难以准确、可靠地界定与识别科研团队的问题,将向量空间模型应用到作者合著关系网络的科研团队发掘研究中。在考虑论文作者署名顺序的前提下,构建论文与作者向量空间,通过计算作者向量的相似度来衡量作者之间的合作关系,再通过社会网络分析中的凝聚子群分析方法分析作者合作关系网络。最后,以某高校内某学院的所有在编教师为研究对象,准确地发掘出所有真实存在的科研团队,从而验证方法的合理性。In the research on personal and institutional evaluation, it is difficult to guarantee the reliability and accuracy of identifying the scientific research team. This paper applies the vector space model into the identification of scientific research teams within the co - authorship network. Under the premise of considering the authorship order in the paper, and by constructing the vector space of papers and authors, the collaboration relationship is measured by calculating the degree of similarity between author vectors. Then, this paper analyses the collaboration network with the analytical approach of cohesion sub - group in social network analysis. At last, by choosing all its faculty of a department in a university as research object, the present research accurately identifies all the scientific research teams that exist in the institution and the rationality of this method is verified.

关 键 词:向量空间模型 作者合作相关度 派系分析 科研团队发现 合著关系网络 

分 类 号:G351[文化科学—情报学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象