Periodic Homogenization for Inner Boundary Conditions with Equi-valued Surfaces:the Unfolding Approach  

Periodic Homogenization for Inner Boundary Conditions with Equi-valued Surfaces:the Unfolding Approach

在线阅读下载全文

作  者:Doina CIORANESCU Alain DAMLAMIAN Tatsien LI 

机构地区:[1]Laboratoire Jacques-Louis Lions(UMR 7598 du CNRS),Universit Pierre et Marie Curie,4 Place Jussieu,75005 Paris,France [2]Universit Paris-Est,Laboratoire d'Analyse et de Math'ematiques Appliques,CNRS UMR 8050 Centre Multidisciplinaire de Crteil,94010 Crteil,Cedex,France [3]Nonlinear Mathematical Modeling and Methods Laboratory [4]Shanghai Key Laboratory for Contemporary Applied Mathematics [5]School of Mathematical Sciences,Fudan University,Shanghai 200433,China

出  处:《Chinese Annals of Mathematics,Series B》2013年第2期213-236,共24页数学年刊(B辑英文版)

基  金:Supported by the National Natural Science Foundation of China (No. 11121101);the National Basic Research Program of China (No. 2013CB834100)

摘  要:Making use of the periodic unfolding method,the authors give an elementary proof for the periodic homogenization of the elastic torsion problem of an infinite 3dimensional rod with a multiply-connected cross section as well as for the general electroconductivity problem in the presence of many perfect conductors(arising in resistivity well-logging).Both problems fall into the general setting of equi-valued surfaces with corresponding assigned total fluxes.The unfolding method also gives a general corrector result for these problems.

关 键 词:Periodic homogenization Elastic torsion Equi-valued surfaces Resistivitywell-logging Periodic unfolding method 

分 类 号:TB12[理学—工程力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象