检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:肖芳英[1] 陈汉武[1] 邢美菊[1] 刘志昊[1]
机构地区:[1]东南大学计算机科学与工程学院,南京211189
出 处:《中国科学:信息科学》2013年第2期204-216,共13页Scientia Sinica(Informationis)
基 金:国家自然科学基金(批准号:60873101;61170321);高等学校博士点专项基金(批准号:20110092110024);东南大学优秀博士论文基金(批准号:YBJJ0820)资助项目
摘 要:本文提出了一类从包含其对偶码的经典线性码[n,k,d]2到纯量子码[[n-i,2k-n+i,d-i]]2(0 i d-2)和[[n+1,2k-n-1,d+1]]2(或[[n+1,2k-n-1,d]]2)的基于矩阵初等变换的构造方法.基于初等代数理论,设计了其构造体系;基于检验矩阵与线性码最小距离之间的关系,分析了其纠错性能;基于稳定子体系,构建了其编译码网络.该方法正确可行的构造性证明简单,易懂,易于计算机及各种硬件系统实现.理论结果显示出该方法对一类量子码的构造非常实用.Based on elementary transformation, we proposed a new method for constructing a class of pure quantum codes [[n - 1; 2k - n + i; d - i]]2(0 ≤ i ≤ d - 2) and [[n + 1; 2k - n - 1; d + 1]]2([In + 1; 2k - n - 1; d]]2) from a class of classical linear codes In; k; d]2 which contain their dual codes. The construction process was designed based on the elementary algebra; the error-correcting performance of the quantum codes was analyzed based on the relationship between the parity-check matrix and the minimum distance of the classical linear codes; the encoding and decoding networks were constructed based on the stabilizer. This method is simple, straightforward and easy to implement via computer and other hardwares. The theoretical results showed that this method is practical for the construction of a class of quantum codes.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249