基于频繁传播模式的影响群落发现方法  被引量:1

Discovering tribe-leaders based on frequent pattern of propagation

在线阅读下载全文

作  者:刘丽娜[1] 沈继红[1,2] 朱强华[3] 丁兆云[4] 

机构地区:[1]哈尔滨工程大学自动化学院,哈尔滨150001 [2]哈尔滨工程大学理学院,哈尔滨150001 [3]海军工程大学电子工程学院,武汉430033 [4]国防科技大学计算机学院,长沙410073

出  处:《吉林大学学报(工学版)》2013年第2期444-450,共7页Journal of Jilin University:Engineering and Technology Edition

基  金:国家自然科学基金项目(61202127)

摘  要:针对传统研究大多基于影响个体挖掘而忽略了影响群落的发现,本文考虑用户之间的频繁传播模式,提出了一种基于频繁传播模式的影响群落挖掘方法。针对群落内部传播模式的多样化,给出了一种信息传播树扩展方法,通过松弛信息传播树有向特性与图扩展方法,将信息传播树转换为连通无向无环图。结合支持度与影响强度,提出了一种新的频繁子图挖掘算法Tribe-FGM,减小模式增长的规模,提高频繁子图挖掘效率。实验采用新浪微博真实数据,在约90万条博文以及对应约64万左右用户的'地震'话题与约31万条博文以及对应约21万左右用户的'两会'话题的数据集上验证了算法的性能和有效性。A novel scheme of mining tribe-leaders was proposed based on the frequent pattern of propagation. In this scheme, first, a method to expend the information tree is applied to overcome the problem of multi-pattern propagation, in which the information propagation tree is converted into a connected and undirected acyclic graph. Then, considering the support and influent strength, a new frequent sub-graph mining method called Tribe-FGM is proposed to improve the efficiency of the graph mining by reducing the scale of pattern growth. A real dataset from sina microblog was taken in the experiment. The dataset is about topic of "earthquake", which contains 0.9 million posts and 0.6 million users, and the topic of the "two sessions", which contains about 0.31 million posts and 0.21 users. Experiment results validate the proposed scheme.

关 键 词:计算机应用 社会网络 频繁模式 影响力 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象