机构地区:[1]Prosthodontics, West China College of Stomatology, Sichuan University [2]State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University
出 处:《Journal of Wuhan University of Technology(Materials Science)》2013年第1期73-78,共6页武汉理工大学学报(材料科学英文版)
基 金:Funded by the Technology Department Science Fund of Sichaun(No.2011GZ011520)
摘 要:The purpose of the present study was to evaluate the effect ofA1203 content on the fracture property of all-ceramics ZrO2. To improve the all-ceramics ZrO2 restoration mechanics properity ,96 samples containing 0,5,10 and 15 wt% of A1203 particles were prepared by cold isostatic pressing (200 MPa) and 1 550 ℃ sintered .The phase was analyzed by X-ray diffraction analysis and the bulk densities of the samples were made using Archimedes principle. Samples were randomly divided into four groups. In each group, 24 specimens were prepared so that the angle between notch and specimen's long axis is 90° and 60°. Notch depths were 1 mm for all samples. Samples were loaded with three-point bending method. 90° cut samples were used to measure fracture toughness while 60°cut samples were used to observe fracture curve by taking points on the fracture extension path under microscope, plotting points on coordinates, generating fitting curve by software "Origin", and analyzing the microstructure of the specimen fracture surfaces by scanning electron microscopy (SEM).The results show that the increment ofA1203 has insignificant effect on the densification of all-ceramic ZrO2.XRD analysis shows that the specimen is comprised of t-ZrO2 and a- A1203 before fracture while fracture surface is m-ZrO2, t-ZrO2 and a-A1203. ZrO2 containing 10% A1203 has the optimum mechanical properties and unconspicuous crack propagation and distribution. The observations may provide a reference for the materials selection, shaoe design, and production orocess of all-ceramic crown and bridge.The purpose of the present study was to evaluate the effect ofA1203 content on the fracture property of all-ceramics ZrO2. To improve the all-ceramics ZrO2 restoration mechanics properity ,96 samples containing 0,5,10 and 15 wt% of A1203 particles were prepared by cold isostatic pressing (200 MPa) and 1 550 ℃ sintered .The phase was analyzed by X-ray diffraction analysis and the bulk densities of the samples were made using Archimedes principle. Samples were randomly divided into four groups. In each group, 24 specimens were prepared so that the angle between notch and specimen's long axis is 90° and 60°. Notch depths were 1 mm for all samples. Samples were loaded with three-point bending method. 90° cut samples were used to measure fracture toughness while 60°cut samples were used to observe fracture curve by taking points on the fracture extension path under microscope, plotting points on coordinates, generating fitting curve by software "Origin", and analyzing the microstructure of the specimen fracture surfaces by scanning electron microscopy (SEM).The results show that the increment ofA1203 has insignificant effect on the densification of all-ceramic ZrO2.XRD analysis shows that the specimen is comprised of t-ZrO2 and a- A1203 before fracture while fracture surface is m-ZrO2, t-ZrO2 and a-A1203. ZrO2 containing 10% A1203 has the optimum mechanical properties and unconspicuous crack propagation and distribution. The observations may provide a reference for the materials selection, shaoe design, and production orocess of all-ceramic crown and bridge.
关 键 词:ZRO2 A1203 all-ceramics NOTCH fracture load fracture curve microstructure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...