检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:段隆焱[1] 田文[2] 徐漫涛[2] 陈亚珠[1]
机构地区:[1]上海交通大学生物医学工程学院,上海200030 [2]上海电机学院,上海200240
出 处:《计算机应用研究》2013年第3期667-671,共5页Application Research of Computers
基 金:上海市科委浦江人才计划资助项目(10PJ1404400);国家自然科学基金资助项目(61072146);上海市教委优青项目(shdj002);上海电机学院项目(12c404)
摘 要:有效的医学图像增强技术应将感兴趣目标或区域增强、背景抑制和噪声削减综合考虑,能改善图像的质量,在减少噪声的同时保持着原有的纹理特征,有助于后续得到正确的临床诊断结果,这对某些疾病的早期确诊有极大帮助。归纳了基于非局部信息的医学图像增强技术常见方法,包括非局部均值滤波算法、三维块匹配算法、形态成分分析算法等,通过介绍这几种方法原理,指出这些方法的使用范围及现状,并进行了性能对比分析,最后探索性地给出了现阶段医学图像增强技术的可能发展方向之一,即基于上下文量化的图像增强技术。Taking into account the improvement of the contrast between regions of interest and the background and denoising, the effective techniques of medical image enhancement can improve image quality and maintain the original characteristics of the texture while denoising, which is helpful to get the correct results in the early clinical diagnosis of disease. This paper sur- veyed several common methods based on non-local patch medical image enhancement, including non-local mean filtering algo- rithm, three-dimensional block-matching (BM3D) algorithm, and morphological component analysis (MCA) algorithm. And it described and compared the status and principle of these methods. Finally, it introduced one of the currenty trends for medi- cal image enhancement, which was based on the context quantization.
关 键 词:医学图像增强 上下文量化 非局部均值(NLM) 三维块匹配(BM3D) 形成成分分析(MCA) GSM
分 类 号:TP391.7[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117