Effects of calcium substitute in LaMnO_3 perovskites for NO catalytic oxidation  被引量:10

Effects of calcium substitute in LaMnO_3 perovskites for NO catalytic oxidation

在线阅读下载全文

作  者:沈美庆 赵真 陈家浩 苏玉更 王军 王欣全 

机构地区:[1]Key Laboratory for Green Chemical Technology of State Education Ministry,School of Chemical Engineering & Technology,Tianjin University [2]State Key Laboratory of Engines,Tianjin University

出  处:《Journal of Rare Earths》2013年第2期119-123,共5页稀土学报(英文版)

基  金:Project supported by National High Technology Research and Development Program of China(863Program,2011AA03A405)

摘  要:La1-x Cax MnO3 (x=0-0.3) perovskite-type oxides were synthesized by citrate sol-gel method. The physical and chemical properties were characterized by X-ray diffraction (XRD), Brumauer-Emmett-Teller method (BET), X-ray photoelectron spectroscopy (XPS), NO+O2 -TPD (temperature-programmed desorption), activated oxygen evaluation and H2 -TPR (temperature-programmed reduction) technologies. The results showed that NO catalytic oxidation activity was significantly improved by Ca substitution, especially for lower temperature activity. The La0.9 Ca0.1 MnO 3 sample showed the maximum conversion of 82% at 300 oC. The monodentate nitrates played a crucial role for the formation of NO2 . The reducibility of Mn 4+ ions and reactivity of activated oxygen were favorable for the catalytic performances of NO oxidation.La1-x Cax MnO3 (x=0-0.3) perovskite-type oxides were synthesized by citrate sol-gel method. The physical and chemical properties were characterized by X-ray diffraction (XRD), Brumauer-Emmett-Teller method (BET), X-ray photoelectron spectroscopy (XPS), NO+O2 -TPD (temperature-programmed desorption), activated oxygen evaluation and H2 -TPR (temperature-programmed reduction) technologies. The results showed that NO catalytic oxidation activity was significantly improved by Ca substitution, especially for lower temperature activity. The La0.9 Ca0.1 MnO 3 sample showed the maximum conversion of 82% at 300 oC. The monodentate nitrates played a crucial role for the formation of NO2 . The reducibility of Mn 4+ ions and reactivity of activated oxygen were favorable for the catalytic performances of NO oxidation.

关 键 词:La 1–x Ca x MnO 3 perovskites NO oxidation monodentate nitrates Mn 4+ ions activated oxygen 

分 类 号:O643.32[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象