检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中山大学电子与通信工程系,广东广州510006
出 处:《软件学报》2013年第3期604-617,共14页Journal of Software
基 金:国家自然科学基金(60970146);国家自然科学基金-广东联合基金(U0735002);国家高技术研究发展计划(863)(2007AA01Z449)
摘 要:为了自动解析未知应用层协议的报文格式,提出一种未知应用层协议报文格式的最佳分段方法.这种方法不需要关于未知应用层协议的先验知识.它首先建立一种用于最佳分段的隐半马尔可夫模型(HSMM),并利用未知应用层协议在网络会话过程中传输的报文序列样本集来估计该模型的参数;再通过基于HSMM的最大似然概率分段方法,对报文中的各个字段进行最佳划分,同时获取代表各个字段语义的关键词.这种方法并不要求训练集绝对纯净.它能够基于观测序列的似然概率分布,发现混杂在训练集中的其他协议数据(噪声)并进行有效过滤.实验结果表明,该方法能够解析文本和二进制协议的报文格式,依据关键词构建的协议识别特征有很高的准确识别率,并能有效地检测出噪声.In order to automatically parse message formats of unknown application-layer protocols, this paper proposes an approach to optimally segment the message formats without a priori knowledge. A hidden semi-Markov model (HSMM) is established for the segmentation and its parameters are estimated from a set of message sequences collected from application sessions. By using the estimated HSMM in the maximum most likely segmentation, a message can be optimally divided into segments and keywords that provide semantic information about the segments can be extracted. This approach does not require the training set to be absolutely pure. The noise mixed in the training set can be filtered out based on its likelihood fitting to the HSMM. The experiments conducted in this paper show that the approach is suited to both text and binary protocols. The application-layer signatures constructed from the extracted keywords are highly accurate in identifying the protocols, The noise mixed in the training set can be efficiently detected and automatically filtered out.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.33