联合非均匀采样和压缩感知的图像压缩算法  被引量:2

An Image Compression Algorithm combined Nonuniform Sample and Compressed Sensing

在线阅读下载全文

作  者:孙静[1] 练秋生[1] 

机构地区:[1]燕山大学信息科学与工程学院,秦皇岛066004

出  处:《信号处理》2013年第1期31-37,共7页Journal of Signal Processing

基  金:国家自然科学基金(No.61071200;No.60772079);河北省自然科学基金资助项目(F2010001294)

摘  要:为了提高图像重构精度,改善纹理区域视觉效果,本文将压缩感知理论与图像压缩相结合,并提出了一种新的采样方法:在编码端对图像高频部分边缘点进行密集采样,对非边缘部分进行随机抽样,取代了传统压缩感知理论中直接使用测量矩阵获得低维观测值的过程。在解码端利用采样点位置信息构造块测量矩阵,使用光滑l0范数(Smoothed l0,SL0)重构算法实现重叠块重构,最终将其与图像低频部分下采样点插值放大结果合并实现高精度重构。实验结果表明:本文算法不仅可以提高整幅图像和纹理区域的重构精度,而且在低采样率或图像尺寸较小的情况下,算法效率也有明显提升。In order to improve the reconstruction precision of the image and the visual presentation of the texture areas, this paper applied compressed sensing theory to image compression, and proposed a new kind of sampling methods : it sampled the edge of the high frequency part of the image densely and the non-edge part randomly in the encoder, instead of using the measurement matrix to obtain the lower-dimensional observation directly in the traditional compressed sensing theory. In the decoder, this paper used the position of the sample-points to structure the block measurement matrix, realizing a overlap-block image reconstruction using smoothed 10 reconstruction algorithm, combined the result with the interpolation amplification of the down-sampled points of the low frequency part of the image realizing a high precision image reconstruction. The experimental result shows that the proposed algorithm can not only improve the reconstruction precision both of the whole image and the texture areas, but also increase the efficiency obviously under the low sampling rate or the small size image.

关 键 词:压缩感知 图像压缩 测量矩阵 随机抽样 

分 类 号:TN911.73[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象