Nanoengineering Titania for High Rate Lithium Storage: A Review  被引量:1

Nanoengineering Titania for High Rate Lithium Storage: A Review

在线阅读下载全文

作  者:Chunhai Jiang Jinsong Zhang 

机构地区:[1]Institute of Metal Research, Chinese Academy of Sciences

出  处:《Journal of Materials Science & Technology》2013年第2期97-122,共26页材料科学技术(英文版)

基  金:the financial support from Institute of Metal Research, Chinese Academy of Sciences, through the "Excellent Scholar" Program is cordially acknowledged

摘  要:Nanostructured titania have been intensively investigated as anode materials of Li-ion batteries for their excellent high rate performance. The size effects of TiO2 polymorphs (mainly rutile, anatase and TiO2-B) on their electrochemical performance and the latest efforts in nanoengineering titania anodes through enhancing their ionic or electronic transportation or both are reviewed in this work. We suppose that micron- or submicron- sized porous structures assembled by TiO2 nanoparticles, nanowires/nanotubes or nanosheets with a high percentage of exposing high reactive facets together with a conductive percolating network are ideal anodes not only for high rate lithium storage but also for high packing densities of the active materials.Nanostructured titania have been intensively investigated as anode materials of Li-ion batteries for their excellent high rate performance. The size effects of TiO2 polymorphs (mainly rutile, anatase and TiO2-B) on their electrochemical performance and the latest efforts in nanoengineering titania anodes through enhancing their ionic or electronic transportation or both are reviewed in this work. We suppose that micron- or submicron- sized porous structures assembled by TiO2 nanoparticles, nanowires/nanotubes or nanosheets with a high percentage of exposing high reactive facets together with a conductive percolating network are ideal anodes not only for high rate lithium storage but also for high packing densities of the active materials.

关 键 词:Li-ion batteries Titania: Nanostructures Rate capability 

分 类 号:O614.411[理学—无机化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象