Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord  被引量:15

Co-transplantation of neural stem cells and Schwann cells within poly (L-lactic-co-glycolic acid) scaffolds facilitates axonal regeneration in hemisected rat spinal cord

在线阅读下载全文

作  者:XIA Lei WAN Hong HAO Shu-yu LI De-zhi CHEN Gang GAO Chuan-chuan LI Jun-hua YANG Fei WANG Shen-guo LIU Song 

机构地区:[1]Beijing Neurosurgical Institute, Capital Medical University,Beijing 100050, China [2]Department of Neurosurgery, Beijing Sanbo Brain Hospital,Capital Medical University, Beijing 100093, China [3]Department of Neurosurgery, Beijing Tiantan Hospital, CapitalMedical University, Beijing 100050, China [4]Department of Neurosurgery, Wuxi No.4 People Hospital, Wuxi,Jiangsu 214062, China [5]State Key Laboratory of Polymer Physics & Chemistry, Institute ofChemistry, Chinese Academy of Sciences, Beijing 100080, China [6]INSERM et University Paris-Sud Le Kremlin-Bicetre, France

出  处:《Chinese Medical Journal》2013年第5期909-917,共9页中华医学杂志(英文版)

基  金:This work was supported by the grant from the International Cooperation Research Foundation of National Natural Science Foundation of China (No. 30540450581). Conflict of interest: none.

摘  要:Background Various tissue engineering strategies have been developed to facilitate axonal regeneration after spinal cord injury. This study aimed to investigate whether neural stem cells (NSCs) could survive in poly(L-lactic-co-glycolic acid) (PLGA) scaffolds and, when cografted with Schwann cells (SCs), could be induced to differentiate towards neurons which form synaptic connection and eventually facilitate axonal regeneration and myelination and motor function. Methods NSCs and SCs which were seeded within the directional PLGA scaffolds were implanted in hemisected adult rat spinal cord. Control rats were similarly injured and implanted of scaffolds with or without NSCs. Survival, migration, differentiation, synaptic formation of NSCs, axonal regeneration and myelination and motor function were analyzed. Student's t test was used to determine differences in surviving percentage of NSCs. One-way analysis of variance (ANOVA) was used to determine the differences in the number of axons myelinated in the scaffolds, the mean latency and amplitude of cortical motor evoked potentials (CMEPs) and Basso, Beattie & Bresnahan locomotor rating scale (BBB) score. The X2 test was used to determine the differences in recovery percentage of CMEPs. Results NSCs survived, but the majority migrated into adjacent host cord and died mostly. Survival rate of NSCs with SCs was higher than that of NSCs without SCs ((1.7831±0.0402)% vs. (1.4911±0.0313)%, P 〈0.001). Cografted with SCs, NSCs were induced to differentiate towards neurons and might form synaptic connection. The mean number of myelinated axons in PLGA+NSCs+SCs group was more than that in PLGA+NSCs group and in PLGA group ((110.25±30.46) vs. (18.25±3.30) and (11.25±5.54), P 〈0.01). The percentage of CMEPs recovery in PLGA+NSCs+SCs group was higher than in the other groups (84.8% vs, 50.0% and 37.5%, P 〈0.05). The amplitude of CMEPs in PLGA+NSCs+SCs group was higher than in the other groBackground Various tissue engineering strategies have been developed to facilitate axonal regeneration after spinal cord injury. This study aimed to investigate whether neural stem cells (NSCs) could survive in poly(L-lactic-co-glycolic acid) (PLGA) scaffolds and, when cografted with Schwann cells (SCs), could be induced to differentiate towards neurons which form synaptic connection and eventually facilitate axonal regeneration and myelination and motor function. Methods NSCs and SCs which were seeded within the directional PLGA scaffolds were implanted in hemisected adult rat spinal cord. Control rats were similarly injured and implanted of scaffolds with or without NSCs. Survival, migration, differentiation, synaptic formation of NSCs, axonal regeneration and myelination and motor function were analyzed. Student's t test was used to determine differences in surviving percentage of NSCs. One-way analysis of variance (ANOVA) was used to determine the differences in the number of axons myelinated in the scaffolds, the mean latency and amplitude of cortical motor evoked potentials (CMEPs) and Basso, Beattie & Bresnahan locomotor rating scale (BBB) score. The X2 test was used to determine the differences in recovery percentage of CMEPs. Results NSCs survived, but the majority migrated into adjacent host cord and died mostly. Survival rate of NSCs with SCs was higher than that of NSCs without SCs ((1.7831±0.0402)% vs. (1.4911±0.0313)%, P 〈0.001). Cografted with SCs, NSCs were induced to differentiate towards neurons and might form synaptic connection. The mean number of myelinated axons in PLGA+NSCs+SCs group was more than that in PLGA+NSCs group and in PLGA group ((110.25±30.46) vs. (18.25±3.30) and (11.25±5.54), P 〈0.01). The percentage of CMEPs recovery in PLGA+NSCs+SCs group was higher than in the other groups (84.8% vs, 50.0% and 37.5%, P 〈0.05). The amplitude of CMEPs in PLGA+NSCs+SCs group was higher than in the other gro

关 键 词:spinal cord injury tissue engineering neural stem cells Schwann cells poly(L-lactic-co-glycolic acid) scaffold 

分 类 号:Q421[生物学—神经生物学] Q51[生物学—生理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象