Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans  被引量:6

Bioleaching of two different types of chalcopyrite by Acidithiobacillus ferrooxidans

在线阅读下载全文

作  者:Ying-bo Dong Hai Lin Kai-bin Fu Xiao-fang Xu Shan-shan Zhou 

机构地区:[1]Key Laboratory of High-Efficient Mining and Safety of Metal Mines (Ministry of Education), University of Science and Technology Beijing [2]School of Civil and Environmental Engineering, University of Science and Technology Beijing

出  处:《International Journal of Minerals,Metallurgy and Materials》2013年第2期119-124,共6页矿物冶金与材料学报(英文版)

基  金:supports by the National Natural Science Foundation (No.51204011);China Postdoctoral Science Foundation (No.2012M520171);the Science and Technology Project for the Guidance Teacher of Beijing Excellent Doctoral Dissertation (No. 20121000803)

摘  要:Two different types of chalcopyrite (pyritic chalcopyrite and porphyry chalcopyrite) were bioleached with AcidithiobaciUus ferrooxidans ATF6. The bioleaching of the pyritic chalcopyrite and porphyry chalcopyrite is quite different. The copper extraction reaches 46.96% for the pyritic chalcopyrite after 48-d leaching, but it is only 14.50% for the porphyry chalcopyrite. Proper amounts of initial ferrous ions can improve the efficiency of copper extraction for the two different types of chalcopyrite. The optimum dosage of ferrous ions for the pyritic chalcopyrite and porphyry chalcopyrite is different. The adsorption of ATF6 on the pyritic chalcopyrite and porphyry chalcopyrite was also studied in this paper. It is found that ATF6 is selectively adsorbed by the two different types of chalcopyrite; the higher adsorption onto the pyritic chalcopyrite than the porphyry chalcopyrite leads to the higher copper dissolution rate of the pyritic chalcopyrite. In addition, the zeta-potential of chalcopyrite before and after bioleaching further confirms that ATF6 is more easily adsorbed onto the pyritic chalcopyrite.Two different types of chalcopyrite (pyritic chalcopyrite and porphyry chalcopyrite) were bioleached with AcidithiobaciUus ferrooxidans ATF6. The bioleaching of the pyritic chalcopyrite and porphyry chalcopyrite is quite different. The copper extraction reaches 46.96% for the pyritic chalcopyrite after 48-d leaching, but it is only 14.50% for the porphyry chalcopyrite. Proper amounts of initial ferrous ions can improve the efficiency of copper extraction for the two different types of chalcopyrite. The optimum dosage of ferrous ions for the pyritic chalcopyrite and porphyry chalcopyrite is different. The adsorption of ATF6 on the pyritic chalcopyrite and porphyry chalcopyrite was also studied in this paper. It is found that ATF6 is selectively adsorbed by the two different types of chalcopyrite; the higher adsorption onto the pyritic chalcopyrite than the porphyry chalcopyrite leads to the higher copper dissolution rate of the pyritic chalcopyrite. In addition, the zeta-potential of chalcopyrite before and after bioleaching further confirms that ATF6 is more easily adsorbed onto the pyritic chalcopyrite.

关 键 词:CHALCOPYRITE BIOLEACHING ADSORPTION functional groups 

分 类 号:TF18[冶金工程—冶金物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象