Heating Process of Thermosetting Insulation Materials for Buildings  被引量:1

Heating Process of Thermosetting Insulation Materials for Buildings

在线阅读下载全文

作  者:孙诗兵 

机构地区:[1]College of Materials Science and Engineering,Wuhan University of Technology

出  处:《Journal of Wuhan University of Technology(Materials Science)》2012年第5期962-966,共5页武汉理工大学学报(材料科学英文版)

基  金:Beijing Natural Science Foundation(No.2112004)

摘  要:Polyurethane (PU) and phenolic (PF) foams used for building isolation were analyzed by thermal gravity/differential thermal analysis to determine their pyrolysis behavior, including the decomposition point and the maximum reaction rate point. Besides, the shape deformations of PU and PF foams were observed, and their oxygen index and the calorific value in combustion were also studied. The results showed that the pyrolysis of both PU and PF can be divided into three stages from room temperature to 1 000 ℃ in the atmospheric air, with total mass loss of 94.345% for PF and 88.191% for PU, respectively. The oxygen index of PU and PF decreased with increasing the temperature and the duration of the heat treatment. With the temperature increasing, the calorific values of both materials were reduced remarkably. These results of the PU and PF could provide basic data of the thermal stability and fire safety design in the application of thermosetting insulation materials.Polyurethane (PU) and phenolic (PF) foams used for building isolation were analyzed by thermal gravity/differential thermal analysis to determine their pyrolysis behavior, including the decomposition point and the maximum reaction rate point. Besides, the shape deformations of PU and PF foams were observed, and their oxygen index and the calorific value in combustion were also studied. The results showed that the pyrolysis of both PU and PF can be divided into three stages from room temperature to 1 000 ℃ in the atmospheric air, with total mass loss of 94.345% for PF and 88.191% for PU, respectively. The oxygen index of PU and PF decreased with increasing the temperature and the duration of the heat treatment. With the temperature increasing, the calorific values of both materials were reduced remarkably. These results of the PU and PF could provide basic data of the thermal stability and fire safety design in the application of thermosetting insulation materials.

关 键 词:polyurethane foam phenolic foam pyrolysis thermo-gravimetry oxygen index calorific value 

分 类 号:TU551[建筑科学—建筑技术科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象