特大增量步算法在板分析中的应用  被引量:1

Application of Large Increment Method in Plate Analysis

在线阅读下载全文

作  者:贾红学[1] 龙丹冰[1] 刘西拉[2] 

机构地区:[1]上海交通大学工程力学系,上海200240 [2]上海交通大学土木工程系,上海200240

出  处:《上海交通大学学报》2013年第2期187-192,共6页Journal of Shanghai Jiaotong University

基  金:国家自然科学基金资助项目(10872128)

摘  要:基于特大增量步算法(LIM)建立了以力为变量的Mindlin-Reissner型矩形板单元,将LIM应用于中厚板问题上,同时给出算例进行分析.通过与精确解和传统的位移法有限元法的结果比较,表明LIM在求解中厚板和薄板问题时有较好的收敛性和准确性,而且在求解薄板问题时不会存在剪切闭锁.A rectangular Mindlin-Reissner plate element with the forces unknown was developed based on the large increment method (LIM). In the present paper, The plate element was developed to analyze moderately thick plates using LIM. Some numerical examples were presented and the results were com- pared with the exact solutions and the solutions from conventional displacement-based finite element meth- ods. The convergence and accuracy of the force-based plate element using LIM for analyzing the moderate- ly thick plates and thin plate were furthermore verified, and it is also shown that the shear locking for thin plate analysis can be prevented.

关 键 词:特大增量步算法 板单元 中厚板 位移法有限元法 剪切闭锁 

分 类 号:O34[理学—固体力学] TU311.4[理学—力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象