检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《Research in Astronomy and Astrophysics》2013年第3期351-358,共8页天文和天体物理学研究(英文版)
基 金:supported by the National Basic Research Program of China (973 Program, Grant No. 2011CB811406);the National Natural Science Foundation of China(Grant Nos.11273031,10733020,10921303 and 11078010);the China Meteorological Administration grant (No. GYHY201106011)
摘 要:Three new longitudinal magnetic field parameters are extracted from SOHO/MDI magnetograms to characterize properties of the stressed magnetic field in active regions, and their flare productivities are calculated for 1055 active regions. We find that the proposed parameters can be used to distinguish flaring samples from non-flaring samples. Using the long-term accumulated MDI data, we build the solar flare prediction model by using a data mining method. Furthermore, the decision boundary, which is used to divide flaring from non-flaring samples, is determined by the decision tree algorithm. Finally, the performance of the prediction model is evaluated by 10-fold cross validation technology. We conclude that an efficient solar flare prediction model can be built by the proposed longitudinal magnetic field parameters with the data mining method.Three new longitudinal magnetic field parameters are extracted from SOHO/MDI magnetograms to characterize properties of the stressed magnetic field in active regions, and their flare productivities are calculated for 1055 active regions. We find that the proposed parameters can be used to distinguish flaring samples from non-flaring samples. Using the long-term accumulated MDI data, we build the solar flare prediction model by using a data mining method. Furthermore, the decision boundary, which is used to divide flaring from non-flaring samples, is determined by the decision tree algorithm. Finally, the performance of the prediction model is evaluated by 10-fold cross validation technology. We conclude that an efficient solar flare prediction model can be built by the proposed longitudinal magnetic field parameters with the data mining method.
关 键 词:Sun: magnetic fields -- Sun: flares -- methods: statistical
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.152.124