检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南方医科大学附属花都医院神经外科,广州510800 [2]广州市花都区新华社区卫生服务中心急诊科,广州市花都区510800
出 处:《中华神经医学杂志》2013年第3期296-300,共5页Chinese Journal of Neuromedicine
基 金:广州市医药卫生科技项目(201102A212027)
摘 要:目的探讨早期预测评估重型颅脑损伤昏迷患者清醒概率的方法,开发预测清醒概率的模型。方法回顾性分析南方医科大学附属花都医院神经外科自2010年5月至2012年7月间收治的263例重型颅脑损伤昏迷患者的临床资料,多分类Logistic回归分析与患者清醒预后相关的多种因素,并建立预测清醒概率的模型。结果多分类Logistic回归显示年龄、入院时瞳孔对光反射、运动格拉斯哥评分(mGCS)、CT示脑干是否受压,治疗后的睁眼时间和脑缺血体积百分比均为重型颅脑损伤昏迷患者清醒的独立预测因子,Pearson残差评估显示预测模型的拟合效果较佳。结论本预测模型有较好的拟合效果,所需预测因子的数据易于获得,普遍适用于基层医院.对重型颅脑损伤昏迷患者早期的临床决策有重要参考价值。Objective To explore a method that predicts the awakening probability of coma patients with severe traumatic brain injury, and develop models for its clinical application. Methods Clinical data of 263 coma patients with severe traumatic brain injury were analyzed retrospectively. Multinomial logistic regression method was employed to analyze the factors related to prognosis of coma patients with severe traumatic brain injury in early stage, and the models of predicting the awakening probability were established. Results Multinomial logistic regression analysis showed that 6 factors, which included age, pupillary light reflex at admission, movement Glasgow scale (mGCS) scores, whether the brainstem was pressed under CT images, opening time of eyes after treatment, and percentages of ischemic brain volume under CT images, were independent factors to predict the awakening probability of coma patients with severe traumatic brain injury. Pearson Residual evaluation showed that the models have well goodness of fit index. Conclusion The prediction models have well goodness of fit, and predict factors that used in the models are easily to obtain in primly hospitals, so it has a wide range of clinical application prospects in coma patients with severe traumatic brain injury in early stage.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222