检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:罗犇[1] 邵之江[1] 徐祖华[1] 赵均[1] 周立芳[1]
机构地区:[1]浙江大学控制科学与工程系工业控制研究所,浙江杭州310027
出 处:《控制工程》2013年第2期227-230,共4页Control Engineering of China
基 金:国家973课题(2009CB320603);国家自然科学基金项目(60934007;60974007)
摘 要:模型预测控制(MPC)在流程工业中应用已经比较成熟。其核心为在线求解二次规划(QP)问题,运算负荷大时延长,对控制器的运算能力要求高,阻碍了MPC向更深更广的应用领域拓展。为解决上述问题,从算法本身和硬件平台2个方面入手,提出了MPC算法一种新的实现方案。新的以粒子群优化算法(PSO)为核心的MPC算法很好地解决了带约束的二次规划问题,并且以可编程逻辑门阵列(FPGA)为平台用实现了PSO-MPC控制器。这一方案使得MPC可以应用在控制器体积受限,采样频率高的运动控制场合。Model predictive control(MPC) is an established control strategy used in the process industry. However, its computational efficiency becomes the main hindrance to its application in higher bandwidth applications, such as in motion control problems. Unlike controllers for process industries, the motion controller must have specific properties, including limited size and high sampling frequen cy. To meet these requirements, this paper explored the implementation of a specified new MPC using PSO as the QP-solver, called PSO-MPC, on a field programmable gate array (FPGA) chip. The PSO-MPC-on-FPGA strategy addresses size constraints and satisfies the need for high sampling frequency by exploiting the parallel features of both the PSO-MPC and the FPGA chip.
关 键 词:模型预测控制(MPC) 粒子群优化算法(PSO) 可编程逻辑门阵列(FPGA)
分 类 号:TP27[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249