检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:解志斌[1] 薛同思[1] 田雨波[1] 邹维辰[1] 刘庆华[1] 马国华[1]
出 处:《电子与信息学报》2013年第3期665-670,共6页Journal of Electronics & Information Technology
基 金:国家自然科学基金(51008143);船舶工业基金(10J3.5.2);江苏高校优势学科建设工程项目资助课题
摘 要:基于压缩感知(Compressed Sensing,CS)的信道估计可以达到减少导频的目的,但在频-时域信道矩阵到时延-多普勒域的稀疏变换中存在谱泄漏现象,影响了信道矩阵的稀疏性和估计的均方误差(MSE)性能。为此该文对信道的稀疏性进行研究,提出一种时域加窗的稀疏优化CS信道估计算法。通过对时域加窗,所提算法抑制了由离散截断导致的多普勒域泄漏,再据此设计出观测矩阵,以此方式增强信道在时延-多普勒域的稀疏性,并实现对稀疏的信道矩阵更为准确的重构,达到改善信道估计MSE性能的目的。仿真结果表明随信噪比的增大,加窗CS算法相比无窗CS算法有效改善了信道估计的性能。Channel estimation which based on Compressed Sensing (CS) can achieve the purpose of reducing pilots, but in the transformation of channel matrix from frequency-time domain to delay-Doppler sparse domain exists spectral leakage phenomenon which affects the sparsity of the channel and the Mean Squared Error (MSE) performance of estimation. For this, this paper studies the sparsity of the channel and a compressed channel estimation algorithm which optimized the sparsity by time domain windowing is proposed. With time domain windowing, the proposed algorithm restrains the leakage of Doppler domain which is caused by discretization and truncation, then the measurement matrix is designed. By this method, the sparsity of the delay-Doppler domain channel is enhanced and the more accurate sparse channel matrix is reconstructed. The channel estimation performance is improved. Simulation results show that with the signal-to-noise ratio increasing, windowed CS algorithm improves effectively the performance of channel estimation compared with no windows CS algorithm.
分 类 号:TN929.5[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15