检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院遥感与数字地球研究所,遥感科学国家重点实验室,北京100101
出 处:《光谱学与光谱分析》2013年第4期1082-1086,共5页Spectroscopy and Spectral Analysis
基 金:国家重点基础研究发展规划项目(2010CB950603);公益性行业(气象)科研专项经费(GYHY201006042);国家自然科学基金项目(40971202,41001209)资助
摘 要:叶面积指数(LAI)作为重要的植被冠层结构参数,对其进行正确估算一直是遥感应用研究的重点。CHRIS/PROBA是目前具有较高分辨率(17m)的高光谱多角度数据,该数据在反演LAI方面有着重要的应用价值。本次研究应用辐射传输ACRM模型来模拟一系列LAI在不同观测天顶角(-80°~+80°)情况下的植被光谱数据,在此基础上利用红波段和近红外波段构建了一个新型高光谱多角度植被指数HDVI,并成功地应用于CHRIS/PROBA数据对LAI的估算。结果表明:(1)相比光谱指数NDVI和多角度指数HDS,新指数能更好地利用光谱和多角度双重信息,与研究区LAI有着更好的相关性,决定系数R2高达0.734 7。(2)利用LAI-HDVI最优拟合方程关系来估测LAI值,得到了研究区的LAI分布图,LAI估算精度均方根误差RMSE为0.619 8。Leaf area index(LAI) is an important structural parameter of vegetation canopy,the correct estimation of which has been the focus in the remote sensing community.As a kind of hyperspectral and multi-angle remote sensing data with higher resolution(17 m),PROBA/CHRIS has significant application value in LAI inversion.In the present paper,the analytical two-layer canopy reflectance model(ACRM) was used to simulate a series of reflectances with different LAI values.Based on this,a new vegetation index was built and successfully applied to LAI inversion of PROBA/CHRIS image data.Our results indicated that: compared with the spectral index NDVI and multi-angle index HDS,the new index could make better use of spectrum and multi-angle messages and have a better correlation with LAI of the study area;moreover,the correlation coefficient R2 reached up to 0.734 7.And in order to obtain the figure of LAI distribution of the study area,we used the optimal fit equation between LAI and HDVI to estimate LAI,and the accuracy of the RMSE was 0.619 8.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.17